Skip to main content
Log in

Multivariate Analysis of a Cobalt Octaethyl Porphyrin-Functionalized SWNT Microsensor Device for Selective and Simultaneous Detection of Multiple Analytes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Multivariate analysis is carried out for single-walled carbon nanotubes (SWNTs) functionalized with a cobalt octaethyl porphyrin (CoOEP) chemiresistive sensor device for selective and simultaneous detection of multiple analytes. The chemiresistor was prepared on Si/SiO2 substrate with photolithographically patterned gold microelectrodes having a 3-µm gap. SWNTs were aligned dielectrophoretically and functionalized with CoOEP by drop-casting. The aligned and CoOEP-functionalized SWNTs were characterized with electrical (IV method), structural, spectroscopic, and morphological techniques, and sensor performance was investigated in a chemiresistive sensing modality. The fabricated sensor shows response towards acetone, dichloromethane, methyl ethyl ketone, ethanol, and methanol, with a lower detection limit of 5 ppm, which is far below the OSHA permissible exposure limit for each analyte, and demonstrates fast response and recovery. The multivariate analysis viz. principal component analysis and linear discrimination analysis reveals high discriminating capability of SWNTs functionalized with the CoOEP chemiresistive sensor towards these analytes, which could be used as an intelligent electronic nose (E-nose). This type of intelligent E-nose can address the crucial need for monitoring environmental pollution in industries, homes, buildings, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.D. Shirsat, M.A. Bangar, M.A. Deshusses, N.V. Myung, and A. Mulchandani, Appl. Phys. Lett. 94, 083502 (2009).

    Article  Google Scholar 

  2. J. Dai, O. Ogbeide, N. Macadam, Q. Sun, W. Yu, Y. Li, B.-L. Su, T. Hasan, X. Huang, and W. Huang, Chem. Soc. Rev. 49, 1756 (2020).

    Article  CAS  Google Scholar 

  3. J.-H. Lee, A. Mirzaei, J.-Y. Kim, J.-H. Kim, H.W. Kim, and S.S. Kim, Sens. Actuators B Chem. 302, 127196 (2020).

    Article  CAS  Google Scholar 

  4. V. Balasubramani, S. Chandraleka, T. Subba Rao, R. Sasikumar, M.R. Kuppusamy, and T.M. Sridhar, J. Electrochem. Soc. 167, 037572 (2020).

    Article  CAS  Google Scholar 

  5. N.M. Santhosh, A. Vasudevan, A. Jurov, A. Korent, P. Slobodian, J. Zavašnik, and U. Cvelbar, Microelectron. Eng. 2020, 111403 (2020).

    Article  Google Scholar 

  6. M.G. Stanford, K. Yang, Y. Chyan, C. Kittrell, and J.M. Tour, ACS Nano 13, 3474 (2019).

    Article  CAS  Google Scholar 

  7. M. Stefanelli, G. Magna, F. Zurlo, F.M. Caso, E. Di Bartolomeo, S. Antonaroli, M. Venanzi, R. Paolesse, C. Di Natale, and D. Monti, ACS Appl. Mater. Interfaces 11, 12077 (2019).

    Article  CAS  Google Scholar 

  8. M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris. Topics in applied physics (Springer, Berlin, 2001).

  9. S. Qiu, K. Wu, B. Gao, L. Li, H. Jin, and Q. Li, Adv. Mater. 31, 1800750 (2019).

    Article  Google Scholar 

  10. S. Park, Y. Byoun, H. Kang, Y.-J. Song, and S.-W. Choi, ACS Omega 4, 10677 (2019).

    Article  CAS  Google Scholar 

  11. J.E. Ellis, Z. Zeng, S.I. Hwang, S. Li, T.-Y. Luo, S.C. Burkert, D.L. White, N.L. Rosi, J.J. Gassensmith, and A. Star, Chem. Sci. 10, 737 (2019).

    Article  CAS  Google Scholar 

  12. F.A. Zubieta-López, J.A. Díaz-Celaya, S. Godavarthi, R. Falconi, E. Chigo-Anota, M. Salazar-Villanueva, F. Ortiz-Chi, and M. Acosta-Alejandro, Diamond Relat. Mater. 110, 108108 (2020).

    Article  Google Scholar 

  13. S. Kim, H.R. Lee, Y.J. Yun, S. Ji, K. Yoo, W.S. Yun, J.-Y. Koo, and D.H. Ha, Appl. Phys. Lett. 91, 093126 (2007).

    Article  Google Scholar 

  14. D.W.H. Fam, A.I.Y. Tok, A. Palaniappan, P. Nopphawan, A. Lohani, and S.G. Mhaisalkar, Sens. Actuators B Chem. 138, 189 (2009).

    Article  CAS  Google Scholar 

  15. Y. Seekaew, A. Wisitsoraat, D. Phokharatkul, and C. Wongchoosuk, Sens. Actuators B Chem. 279, 69 (2019).

    Article  CAS  Google Scholar 

  16. P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, and K.J. Cho, Nano Lett. 3, 347 (2003).

    Article  CAS  Google Scholar 

  17. A.D. Rushi, K.P. Datta, P.S. Ghosh, A. Mulchandani, and M.D. Shirsat, J. Phys. Chem. C 118, 24034 (2014).

    Article  CAS  Google Scholar 

  18. A. Rushi, K. Datta, P. Ghosh, A. Mulchandani, and M. Shirsat, Physica status solidi (a) 215, 1700956 (2018).

    Article  Google Scholar 

  19. M. Biesaga, K. Pyrzyńska, and M. Trojanowicz, Talanta 51, 209 (2000).

    Article  CAS  Google Scholar 

  20. R.A. Ware, and J. Wei, J. Catal. 93, 100 (1985).

    Article  CAS  Google Scholar 

  21. C. Di Natale, D. Monti, and R. Paolesse, Mater. Today 13, 46 (2010).

    Article  Google Scholar 

  22. P. Lorwongtragool, N. Boonyopakorn, and S. Kladsomboon, J. Phys. Conf. Ser. 2019, 012014 (2019).

    Article  Google Scholar 

  23. G Mamtmin, N Kari, R Abdurahman, P Nizamidin and A Yimit, Optics & Laser Technology. 128, 106260 (2020).

  24. S. Ishihara, J. Labuta, W. Van Rossom, D. Ishikawa, K. Minami, J.P. Hill, and K. Ariga, Phys. Chem. Chem. Phys. 16, 9713 (2014).

    Article  CAS  Google Scholar 

  25. Y. Wang, P. Ma, F. Song, S. Yao, C. Chen, and P. Zhu, J. Colloid Interface Sci. 490, 129 (2017).

    Article  CAS  Google Scholar 

  26. C. Di Natale, K. Buchholt, E. Martinelli, R. Paolesse, G. Pomarico, A. D’Amico, I. Lundström, and A.L. Spetz, Sens. Actuators B Chem. 135, 560 (2009).

    Article  Google Scholar 

  27. M.D. Shirsat, T. Sarkar, J. Kakoullis Jr., N.V. Myung, B. Konnanath, A. Spanias, and A. Mulchandani, J. Phys. Chem. C 116, 3845 (2012).

    Article  CAS  Google Scholar 

  28. T. Zhang, S. Mubeen, N.V. Myung, and M.A. Deshusses, Nanotechnology 19, 332001 (2008).

    Article  Google Scholar 

  29. K. Datta, P. Ghosh, M.A. More, M.D. Shirsat, and A. Mulchandani, J. Phys. D Appl. Phys. 45, 355305 (2012).

    Article  Google Scholar 

  30. P.K. Giri, and D.K. Singh, J. Surf. Eng. Mater. Adv. Technol. 3, 27316 (2013).

    Google Scholar 

  31. B. Yue, Y. Wang, C.-Y. Huang, R. Pfeffer, and Z. Iqbal, J. Nanosci. Nanotechnol. 7, 994 (2007).

    Article  CAS  Google Scholar 

  32. C.J. Verma, R.K. Pandey, and R. Prakash, Mater. Sci. Eng. B 227, 80 (2018).

    Article  CAS  Google Scholar 

  33. Y. Shi, L. Ren, D. Li, H. Gao, and B. Yang, J. Surf. Eng. Mater. Adv. Technol. 3, 6 (2013).

    Google Scholar 

  34. X. Dong, Y. Tang, M. Wu, B. Vlahovic, and L. Yang, J. Biol. Eng. 7, 19 (2013).

    Article  Google Scholar 

  35. C. Zheng, L. Huang, W. Li, and W. Chen, Appl. Phys. B 123, 27 (2017).

    Article  Google Scholar 

  36. A.I. Lopez-Lorente, B.M. Simonet, and M. Valcárcel, Analyst 139, 290 (2014).

    Article  CAS  Google Scholar 

  37. D.R. Kauffman, O. Kuzmych, and A. Star, J. Phys. Chem. C 111, 3539 (2007).

    Article  CAS  Google Scholar 

  38. M.E. Itkis, S. Niyogi, M.E. Meng, M.A. Hamon, H. Hu, and R.C. Haddon, Nano Lett. 2, 155 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their sincere thanks to UGC-DAE CSR (RRCAT), Indore (Project No. CSR-IC-BL66/CRS-183/2016-17/847), Inter University Accelerator Center (IUAC), New Delhi, India (UFR No. 62320), DST-SERB, New Delhi (Project No. EEQ/2017/000645), Rashtriya Uchachatar Shiksha Abhiyan (RUSA), Government of Maharashtra, UGC-SAP Programme (F.530/16/DRS-I/2016 (SAP-II) Dt. 16-04-2016), and DST-FIST (Project No. SR/FST/PSI-210/2016(C) dtd. 16/12/2016) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra D. Shirsat.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirsat, S.M., Bodkhe, G.A., Sonawane, M.M. et al. Multivariate Analysis of a Cobalt Octaethyl Porphyrin-Functionalized SWNT Microsensor Device for Selective and Simultaneous Detection of Multiple Analytes. J. Electron. Mater. 50, 5780–5787 (2021). https://doi.org/10.1007/s11664-021-09111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09111-3

Keywords

Navigation