Skip to main content
Log in

Thermal Lensing Effect in Laser Nanofluids Based on Poly (aniline-co-ortho phenylenediamine)@\(\text{TiO}_{2}\) Interaction

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A poly (aniline-co-ortho phenylenediamine)@\(\text{TiO}_{2}\) (PACOPDA@\(\text{TiO}_{2}\)) nanocomposite was constructed by in situ copolymerization and its nanofluid was prepared via a two-step process. The prepared materials were characterized employing Fourier-transform infrared (FTIR) spectroscopy, energy dispersive X-ray (EDX), X-ray diffraction (XRD), field emission scanning electron microsopy (FESEM), and thermogravimetric analysis (TGA). The thermo-optical response of the PACOPDA@\(\text{TiO}_{2}\) nanofluid with different input pump power of a laser was investigated. The optical properties of the prepared materials were examined by ultraviolet-visible (UV-Vis) spectroscopy. Spatial self-phase modulation and Z-scan were utilized to study the PACOPDA@\(\text{TiO}_{2}\) nanofluid nonlinearity. An enhancement in the thermo-optical property with an increase in the input pump power and concentration of the PACOPDA@\(\text{TiO}_{2}\) was observed. The results showed that the PACOPDA@\(\text{TiO}_{2}\) nanocomposite offers new potential in nonlinear optical applications. Furthermore, a one-order increase in the nonlinear refractive index of the PACOPDA@\(\text{TiO}_{2}\) nanofluid vis-á-vis the PACOPDA was observed. The thermo-optical behavior of the PACOPDA@\(\text{TiO}_{2}\) shifts from self-defocussing to self-focusing with increasing intensity and concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Ali, I. Aamina, N.A. Khan, M. Sheikh, I. Tlili, M. Gohar, Effects of different shaped nanoparticles on the performance of engine-oil and kerosene-oil: a generalized brinkman-type fluid model with non-singular kernel. Sci. Rep. 8, 15285 (2018)

    Article  CAS  Google Scholar 

  2. C. Kleinstreuer, Y. Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. RSC Adv. 7, 56023 (2017)

    Google Scholar 

  3. W. Chamsa-ard, S. Brundavanam, C.C. Fung, D. Fawcett, G. Poinern, Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: a review. Nanomaterials 7, 13 (2017)

    Article  CAS  Google Scholar 

  4. R.A. Taylor, T. Otanicar, G. Rosengarten, Nanofluid-based optical filter optimization for PV/T systems. Light Sci. Appl. 1, 34 (2012)

    Article  CAS  Google Scholar 

  5. T.B. Gorji, A.A. Ranjbar, A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs). Renew. Sustain. Energy Rev. 72, 10–32 (2017)

    Article  CAS  Google Scholar 

  6. Z. Said, R. Saidur, N.A. Rahim, Optical properties of metal oxide nanofluid. Int. Commun. Heat Mass Transf. 59, 46–54 (2014)

    Article  CAS  Google Scholar 

  7. R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, R. Prasher, Nanofluid optical property characterization: towards efficient direct absorption. Nanoscale Res. Lett. 6, 225 (2011)

    Article  CAS  Google Scholar 

  8. H. Duan, R. Chen, Y. Zheng, C. Xu, solar collectors, Taylor et al, Photothermal properties of plasmonic nanoshell-blended nanofluid for direct solar thermal absorption. Optics Express 26, 23 (2018)

  9. J. Fang, Y. Xuan, Investigation of optical absorption and photothermal conversion characteristics of binary CuO/ZnO nanofluids. Nanoscale Res. Lett. 6, 229 (2011)

    CAS  Google Scholar 

  10. W. Yu, H. Xie, A review on nanofluids: preparation, stability mechanisms, and applications. J. Nanomater. 435873, 1–17 (2012)

    Google Scholar 

  11. F. Sun, S. He, Remote cooling by a novel thermal lens with anisotropic positive thermal conductivity. Sci. Rep. 7, 40949 (2017)

    Article  CAS  Google Scholar 

  12. M. Du, G.H. Tang, Optical property of nanofluids with particle agglomeration. Sol. Energy 122, 864–872 (2015)

    Article  CAS  Google Scholar 

  13. S.H.A. Ahmad, R. Saidur, I.M. Mahbubul, F.A. Al-Sulaiman, Optical properties of various nanofluids used in solar collector: A review. Renew. Sustain. Energy Rev. 73, 1014–1030 (2017)

    Article  CAS  Google Scholar 

  14. C. Qiu, Y. Yang, C. Li, Y. Wang, W. Kan, J. Chen, All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci. Rep. 7, 17046 (2017)

    Article  CAS  Google Scholar 

  15. J. Gosciniak, S.I. Bozhevolnyi, Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides. Sci. Rep. 3, 1803 (2013)

    Article  CAS  Google Scholar 

  16. C. Sheng, H. Liu, S. Zhu, D.A. Genov, Active control of electromagnetic radiation through an enhanced thermo-optic effect. Sci. Rep. 5, 8835 (2015)

    Article  CAS  Google Scholar 

  17. H.-W. Chen, D.P. Gulo, Y.-C. Chao, H.-L. Liu, Characterizing temperature-dependent optical properties of PbI3 single crystals using spectroscopic ellipsometry. Sci. Rep. 9, 18253 (2019)

    Article  CAS  Google Scholar 

  18. J. Di, Y. Yu, Z. Wang, W. Qu, C.Y. Cheng, J. Zhao, Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry. Opt. Express 24, 25 (2016)

    Article  Google Scholar 

  19. C. Simonelli, E. Neri, A. Ciamei, I. Goti, M. Inguscio, A. Trenkwalder, M. Zaccanti, Realization of a high power optical trapping setup free from thermal lensing effects. Opt. Express 27(19), 27215–27228 (2019)

    Article  CAS  Google Scholar 

  20. R. Rusconi, L. Isa, R. Piazza, Thermal-lensing measurement of particle thermophoresis in aqueous dispersions. Josa B 21(3), 605–616 (2004)

    Article  CAS  Google Scholar 

  21. S. Farahani, K. Madanipour, A. Koohian, Experimental investigation of thermal effects in laser-nanofluid interaction by moiré technique. Appl. Opt. 56, 31 (2017)

    Article  Google Scholar 

  22. R. Boyd, Nonlinear Optics, 3rd Edition, ISBN: 9780080485966, (Academic Press 1-640, 2008).

  23. B.G. Ghamsari, P. Berini, Nonlinear optics rules magnetism. Nat. Photonics 10, 74–75 (2016)

    Article  CAS  Google Scholar 

  24. T. Morimoto, N. Nagaosa, Topological nature of nonlinear optical effects in solids. Sci. Adv. 2(5), 1501524 (2016)

    Article  Google Scholar 

  25. M. Junchao, G. Qiangqiang, L. Yinan, L. Jiawei, Y. Peng, X. Zhuo, L. Zheng, C. Jian-Hao, J. Feng, D. Sun, Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019)

    Article  CAS  Google Scholar 

  26. H. Darabi, M. Adelifard, Y. Rajabi, Characterization of nonlinear optical refractive index for graphene oxide-Silicon oxide nanohybrid composite. J. Nonlinear Opt. Phys. Mater. 28(01), 1950005 (2019)

    Article  CAS  Google Scholar 

  27. S. Talebi, Y. Rajabi, M. Ardyanian, Enhanced nonlinear optical properties of ZnO:WO3 nanocomposites. J. Nanophotonics 13(1), 016003 (2019)

    Article  CAS  Google Scholar 

  28. S.-C. Lee, B.J. Kang, M.-J. Koo, S.-H. Lee, J.-H. Han, J.-Y. Choi, W.T. Kim, M. Jazbinsek, H. Yun, D. Kim, F. Rotermund, O.-P. Kwon, Nonlinear optics: new electro-optic salt crystals for efficient terahertz wave generation by direct pumping at Ti: sapphire wavelength. Adv. 5(5), 1600758 (2017)

    Google Scholar 

  29. F. Timpu, M.R. Escalé, M. Timofeeva, N. Strkalj, M. Trassin, M. Fiebig, R. Grange, Enhanced nonlinear yield from barium titanate metasurface down to the near ultraviolet. Adv. Opt. Mater. 7(22), 1900936 (2019)

    Article  CAS  Google Scholar 

  30. Ch. Bao, X. Xu, J. Chen, Q. Zhang, Synthesis of biodegradable protein-poly(\(\epsilon \)-caprolactone) conjugates via enzymatic ring opening polymerization. Polym. Chem. 11, 682–686 (2020)

    Article  CAS  Google Scholar 

  31. H. Xia, C. Hu, T. Chen, H. Dan, M. Zhang, K. Xie, Advances in conjugated polymer lasers. Polymers 11, 443 (2019)

    Article  CAS  Google Scholar 

  32. D.W. Samuel, G.A. Turnbull, Polymer lasers: recent advances. Mater. Today 7(9), 28–35 (2004)

    Article  CAS  Google Scholar 

  33. T. Lippert, Laser application of polymers. Adv. Polym. Sci. 168, 147–215 (2004)

    Google Scholar 

  34. F. Qiu, A.M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, S. Yokoyama, A hybrid electro-optic polymer and \(\text{TiO}_2\) double-slot waveguide modulator. Sci. Rep. 5, 8561 (2015)

    Article  CAS  Google Scholar 

  35. S.R. Marder, B. Kippelen, A.K.-Y. Jen, N. Peyghambarian, Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388, 845–851 (1997)

    Article  CAS  Google Scholar 

  36. Y. Kwon, D. Hoon Choi, and J.I. Jin, Optical, electro-optic and optoelectronic properties of natural and chemically modified DNAs. Polym. J. 44, 1191–1208 (2012)

    Article  CAS  Google Scholar 

  37. M.M. Lakouraj, E.N. Zare, P.N. Moghadam, Synthesis of Novel Conductive Poly(p-phenylenediamine)/Fe3O4 Nanocomposite via Emulsion Polymerization and Investigation of Antioxidant Activity. Adv. Polym. Technol. 33(1), 21385 (2014). (1-7)

  38. E.N. Zare, T. Abdollahi, A. Motahari, Effect of functionalization of iron oxide nanoparticles on the physical properties of poly (aniline-co-pyrrole) based nanocomposites: Experimental and theoretical studies. Arab. J. Chem. 4, 16 (2018)

    Google Scholar 

  39. A.N. Gheymasi, Y. Rajabi, E.N. Zare, Nonlinear optical properties of poly(aniline-co-pyrolle)Zno-based nanofluid. Opt. Mater. 102, 109835 (2020)

    Article  CAS  Google Scholar 

  40. E.N. Zare, M.M. Lakouraj, A. Ramezani, Efficient sorption of Pb(II) from an aqueous solution using a poly(aniline-co-3-aminobenzoic acid)-based magnetic core-shell nanocomposite. New J. Chem. 40(3), 2521–2529 (2016)

    Article  CAS  Google Scholar 

  41. E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 63(1), 1–22 (2020)

    Article  CAS  Google Scholar 

  42. S. Bhandari, Polyaniline: Structure and Properties Relationship. In Polyaniline Blends, Composites, and Nanocomposites 2360 (2018).

  43. E. Subramanian, S. Subbulakshmi, C. Murugan, Interrelationship between nanostructures of conducting polyaniline and the photocatalytic methylene blue dye degradation efficiencies of its hybrid composites with anatase \(\text{TiO}_2\). Mater. Res. Bull. 51, 128–135 (2014)

    Article  CAS  Google Scholar 

  44. F. Wang, F. Min, Y. Han, L. Feng, Visible-light-induced photocatalytic degradation of methylene blue with polyanilinesensitized \(\text{TiO}_2\) composite photocatalysts. Superlattice Microstruct. 48, 170–180 (2010)

    Article  CAS  Google Scholar 

  45. N.Y. Mostafa, M.B. Mohamed, N.G. Imam, M. Alhamyani, Electrical and optical properties of hydrogen titanate nanotube/PANI hybrid nanocomposites. Colloid Polym. Sci. 294, 215 (2016)

    Article  CAS  Google Scholar 

  46. T. Remyamol, H. John, P. Gopinath, Synthesis and nonlinear optical properties of reduced graphene oxide covalently functionalized with polyaniline. Carbon 59, 308–314 (2013)

    Article  CAS  Google Scholar 

  47. L. Ma, Y. Zhang, N. Wang, P. Yuan, Nonlinear optical properties of polyaniline composite materials. Chin. Opt. Lett. 5(10), 599–600 (2007)

    CAS  Google Scholar 

  48. H. Bidadi, A. Olad, M. Parhizkar, S.M. Aref, M. Ghafouri, Nonlinear properties of ZnO-polymer composites prepared by solution-casting method. Vacuum 87, 50–54 (2013)

    Article  CAS  Google Scholar 

  49. W. Zhao, Y. Wang, A. Wang, Nonlinear optical properties of novel polypyrrole derivatives bearing different aromatic segments. Mater. Sci. Appl. 8, 774–783 (2017)

    CAS  Google Scholar 

  50. S. Anwar ul Haq Ali, U. Sami, B. Salma, R. Gul, S. Humaira, Reduced Graphene oxide/Poly(Pyrrole-co-Thiophene) Hybrid Composite Materials: Synthesis. Characterization, and Super capacitive Properties. Polymers 12(5), 1110 (2020)

    Article  CAS  Google Scholar 

  51. A. Wang, L. Cheng, X. Chen, Ch. Li, J. Zhanga, W. Zhu, Efficient optical limiting of polypyrrole ternary nanohybrids co-functionalized with peripherally substituted porphyrins and axially coordinated metal-porphyrins. Dalton Trans. 48, 14467–14477 (2019)

    Article  CAS  Google Scholar 

  52. Sh. Singh, Refractive index measurement and its applications. Phys. Scr. 65, 2 (2001)

    Google Scholar 

  53. Sh. Mohan, E. James, K. Drennen, C.A. Anderson, Refractive index measurement of pharmaceutical solids: a review of measurement methods and pharmaceutical applications. J. Pharma. Sci. 108(11), 3478–3495 (2019)

    Article  CAS  Google Scholar 

  54. B. Šantić, D. Gracin, K. Juraić, Measurement method for the refractive index of thick solid and liquid layers. Appl. Opt. 48(22), 4430–4436 (2009)

    Article  Google Scholar 

  55. Z. Karny, O. Kafri, Refractive-index measurements by moiré deflectometry. Appl. Opt. 21(18), 3326–3328 (1982)

    Article  CAS  Google Scholar 

  56. S. Rasouli, Y. Rajabi, Investigation of the inhomogeneity of atmospheric turbulence at day and night times. J. Opt. Laser Technol. 77, 40–50 (2016)

    Article  Google Scholar 

  57. S. Rasouli, Y. Rajabi, H. Sarabi, Microlenses focal length measurement using Z-scan and parallel moiré deflectometry. Opt. Lasers Eng. 51(12), 1321–1326 (2013)

    Article  Google Scholar 

  58. M. Sheik-bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam \(n_{2}\) measurements. Opt. Lett. 14(17), 955–957 (1989)

    Article  CAS  Google Scholar 

  59. M. Sheik-bahae, A.A. Said, T. Wei et al., Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electr. 26(4), 760–769 (1990)

    Article  CAS  Google Scholar 

  60. E.N. Zare, M.M. Lakouraj, S. Ghasemi, E. Moosavi, Emulsion polymerization for the fabrication of poly(o-phenylenediamine)multi-walled carbon nanotubes nanocomposites: characterization and their application in the corrosion protection of 316L SS. RSC Adv. 5, 68788 (2015)

    Article  CAS  Google Scholar 

  61. J.L. Olmedo-Martínez, B.I. Farías-Mancilla, A. Vega-Rios, E.A. Zaragoza-Contreras, Poly (ortho-phenylenediamine-co-aniline) based copolymer with improved capacitance. J. Power Sources 366, 233–240 (2017)

    Article  CAS  Google Scholar 

  62. A.S. Al-Hussaini, A.M. Elias, M.A. Abd El-Ghaffar, New Poly(aniline-co-o-phenylenediamine)/Kaolinite Microcomposites for Water Decontamination. J Polym Environ 25, 35–45 (2017)

  63. Ch. Yang, M. Zhang, W. Dong, G. Cui, Z. Ren, W. Wang, Highly efficient photocatalytic degradation of methylene blue by PoPD/\(\text{TiO}_2\) nanocomposite. PLoS ONE 12, 174104 (2017)

    Google Scholar 

  64. V. Loryuenyong, N. Jarunsak, T. Chuangchai, A. Buasri, The photocatalytic reduction of hexavalent chromium by controllable mesoporous anatase \(\text{TiO}_2\) nanoparticles. Adv. Mater. Sci. Eng. 348427, 1–8 (2014)

    Article  CAS  Google Scholar 

  65. H.-L. Wang, D.-Y. Zhao, W.-F. Jiang, Synthesis and photocatalytic activity of poly-o-phenylenediamine (PoPD)/\(\text{TiO}_{2}\) composite under VIS-light irradiation. Synth. Met. 162, 296–302 (2012)

    Article  CAS  Google Scholar 

  66. E. Nazarzadeh Zare, M.M. Lakouraj, A. Ashna, Synthesis of conductive poly (3-aminobenzoic acid) nanostructures with different shapes in acidic ionic liquids medium. Journal of Molecular Liquids 271, 514–521 (2018)

  67. R. Vijayalakshmi, K.V. Rajendran, Influence of surfactants on the synthesis of \(\text{TiO}_2\) nanoparticles. Adv. Technol. Mater. Mater. Process. 11(2), 63–68 (2009)

    CAS  Google Scholar 

  68. H. Geng, R. Peng, Sh. Han, X. Gu, M. Wang, Surface-modified titania nanoparticles with conjugated polymer for hybrid photovoltaic devices. J. Electron. Mater. 39(10), 2346–2351 (2010)

    Article  CAS  Google Scholar 

  69. S.M. Sayyah, A.B. Khaliel, A.A. Aboud, S.M. Mohamed, Chemical polymerization kinetics of Poly-O-Phenylenediamine and characterization of the obtained polymer in aqueous hydrochloric acid solution using \(\text{ K}_2\text{Cr}_2\text{O}_7\) as oxidizing agent. Int. J. Polym. Sci. 520910, 1–16 (2014)

    Article  CAS  Google Scholar 

  70. R. Vijayalakshmi, V. Rajendran, Synthesis and characterization of nano-\(\text{TiO}_2\) via different methods. Arch. Appl. Sci. Res. 4(2), 1183–1190 (2012)

    CAS  Google Scholar 

  71. Ch. Yang, M. Zhang, W. Dong, G. Cui, Z. Ren, W. Wang, Highly efficient photocatalytic degradation of methylene blue by PoPD/\(\text{ TiO}_2\) nanocomposite. PLoS ONE 12, 3 (2017)

    Google Scholar 

  72. T. Zhou, Sh. Wu, J. Cai, W. Ruan, Rapid humidity sensors based on poly (o-phenylenediamine-co-aniline) spherical nanoparticles. Polym. Bull. 77, 1095–1105 (2020)

    Article  CAS  Google Scholar 

  73. A.S. Al-Hussaini, A.M. Elias, M.A. Abd El-Ghaffar, New Poly(aniline-\(co\)-\(o\)-phenylenediamine)/Kaolinite microcomposites for water decontamination. J. Polym. Environ. 25, 35–45 (2017)

  74. Zh. Wang, Zh. Pan, J. Wang, R. Zhao, A novel hierarchical structured Poly(lactic acid)/Titania fibrous membrane with excellent antibacterial activity and air filtration performance. J. Nanomater. 6272983, 1–17 (2016)

    Google Scholar 

  75. K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, Amsterdam, 1993).

    Google Scholar 

  76. K.R. Vijesh, P.N. Musfir, T. Thomas, M. Vaishakh, V.P.N. Nampoori, Sh. Thomas, Enhanced nonlinear optical properties of solution dispersed carbon dots decorated graphene oxide with varying viscosity. Opt. Laser Technol. 121, 105776 (2020)

    Article  CAS  Google Scholar 

  77. M.H. Mahdieh, M.A. Jafarabadi, Optical characterization of thermal lens effect in ethanol and the influence of focusing lens and liquid cell size. Opt. Laser Technol. 44(1), 78–82 (2012)

    Article  CAS  Google Scholar 

  78. Y. Ganot, Z. Hazan, B.D. Barmashenko, I. Bar, Implications of thermal lensing and four-wave mixing on stimulated Raman scattering in an aqueous solution of sodium nitrate. Opt. Laser Technol. 127, 106169 (2020)

    Article  CAS  Google Scholar 

  79. W. Wang, Y. Wu, Q. Wu et al., Coherent nonlinear optical response spatial self-phase modulation in MoSe2 nano-sheets. Sci. Rep. 6, 22072 (2016)

    Article  CAS  Google Scholar 

  80. L. Wu, X. Yuan, D. Ma, Y. Zhang, W. Huang, Y. Ge, Y. Song, Y. Xiang, J. Li, H. Zhang, Recent advances of spatial self-phase modulation in 2D materials and passive photonic device applications. Small 16, 2002252 (2020)

    Article  CAS  Google Scholar 

  81. A. Sezer, U. Gurudas, B. Collins, A. Mckinlay, D.M. Bubb, Nonlinear optical properties of conducting polyaniline and polyaniline-Ag composite thin films. Chem. Phys. Lett. 477, 164–168 (2009)

    Article  CAS  Google Scholar 

  82. A. Bahrami, Z.A. Talib, E. Shahriari, W.M.M. Yunus, A. Kasim, K. Behzad, Optical nonlinearity, electrical property, characterization of electro synthesized conjugated polymer-carbon nanotube composite. Int. J. Mol. Sci. 13, 918–928 (2012)

    Article  CAS  Google Scholar 

  83. Sh. Mao, Y. Xu, J. Niu, X. Wang, M. Wang, Nonlinear optical properties of Poly(3,4-ethylenedioxythiophene) synthesized by electropolymerization. Jpn. J. Appl. Phys. 48, 1–3 (2009)

    Article  CAS  Google Scholar 

  84. G.M. Shabeeb, C.A. Emshary, Q.M.A. Hassan, H.A. Sultan, Investigating the nonlinear optical properties of poly eosin-Y phthalate solution under irradiation with low power visible CW laser light. Phys. B Phys. Condens. Matter 4526, 19 (2019)

    Google Scholar 

  85. J.I. Jang, S. Mani, J.B. Ketterson, P. Lovera, G. Redmond, Nonlinear refractive index and three-photon absorption coefficient of poly(9,9-dioctylfluorence). Appl. Phys. Lett. 95, 221906 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Rajabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadkhah, S., Rajabi, Y. & Zare, E.N. Thermal Lensing Effect in Laser Nanofluids Based on Poly (aniline-co-ortho phenylenediamine)@\(\text{TiO}_{2}\) Interaction. Journal of Elec Materi 50, 4896–4907 (2021). https://doi.org/10.1007/s11664-021-09028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09028-x

Keywords

Navigation