Skip to main content
Log in

Thermal Oxidation and SILAR Method to Prepare CuO/CdS Composite Nanostructure and Its Enhanced Photocatalytic Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, a series of CuO/CdS composites were synthesized by thermal oxidation and successive ionic layer adsorption and reaction (SILAR). The as-prepared CuO/CdS composites were investigated by x-ray diffraction (XRD), field emission high-resolution scanning electron microscopy (FESEM) and energy-dispersive spectrometry. Their photocatalytic activity was investigated by monitoring the degradation of methylene blue (MB) under ultraviolet and visible light irradiation. The XRD pattern indicated that the precursor was cubic-phase CuO and Cu2O. FESEM results indicate that changes in annealing time and temperature have an effect on morphology, but the nanowire structures are preserved. The growth mechanism of the CuO nanowires is discussed in detail. Furthermore, the photocatalytic degradation rate of the MB, determined using an ultraviolet-visible spectrophotometer (UV-vis, UV-2600, Shimadzu), indicates that CdS can significantly improve the absorption of visible light from the sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.M. Tosine, J. Lawrence, and J.H. Carey, Bull. Environ. Contam. Toxicol. 16, 697 (1976).

    Article  Google Scholar 

  2. T.K.S. Wong, S. Zhuk, S. Masudypanah, and G.K. Dalapati, Materials 9, 271 (2016).

    Article  CAS  Google Scholar 

  3. P.N. Thomas, and C.B. Alex, Tetrahedron Lett. 60, 150883 (2019).

    Article  Google Scholar 

  4. S. Senobari, and A. Nezamzadeh-Ejhieh, Spectrochim. Acta Part A 196, 334 (2018).

    Article  CAS  Google Scholar 

  5. J.B. Liang, N. Kishi, T. Soga, and T. Jimbo, Appl. Surf. Sci. 257, 62 (2010).

    Article  CAS  Google Scholar 

  6. R. Ruiz-Rosas, J. Bedia, J.M. Rosas, M. Lallave, I.G. Loscertales, J. Rodríguez-Mirasol, and T. Cordero, Catal. Today. 187, 77 (2012).

    Article  CAS  Google Scholar 

  7. C.N. Rao, R. Voggu, and A. Govindaraj, Nanoscale 1, 96 (2009).

    Article  CAS  Google Scholar 

  8. V. Scuderi, G. Amiard, S. Boninelli, S. Scalese, and V. Privitera, Mater. Sci. Semicond. Process. 42, 89 (2016).

    Article  CAS  Google Scholar 

  9. Y.Q. Wang, D.W. Meng, X.Q. Liu, and F. Li, Cryst. Res. Technol. 44, 1277 (2010).

    Article  Google Scholar 

  10. T.T. Jiang, Y.Q. Wang, D.W. Meng, X.L. Wu, J.X. Wang, and J.Y. Chen, Appl. Surf. Sci. 311, 602 (2014).

    Article  CAS  Google Scholar 

  11. D. Susmita, and C.S. Vimal, Mater. Sci. Semicond. Process. 57, 173 (2019).

    Google Scholar 

  12. Y.Q. Wang, T.T. Jiang, D.W. Meng, J. Yang, Y.C. Li, Q. Ma, and J. Han, Appl. Surf. Sci. 317, 414 (2014).

    Article  CAS  Google Scholar 

  13. Y.T. Wang, X.T. Zhang, J. Xu, J.B. Xu, Y. Shen, C.A. Wang, F.W. Li, Z.H. Zhang, J. Chen, Y.H. Ye, and R.Q. Shen, Def. Technol. 1507, 022024 (2020).

    CAS  Google Scholar 

  14. X.Q. Liu, Z. Li, Q. Zhang, F. Li, and T. Kong, Mater. Lett. 72, 49 (2012).

    Article  CAS  Google Scholar 

  15. S.H. Shen, SPIENewsroom 8, 005579 (2014).

    Google Scholar 

  16. N. Shin-ichi, S. Yuya, and T. Hiroaki, Catal. Commun. 142, 106044 (2020).

    Article  Google Scholar 

  17. R. Zhao, T.Y. Zhang, Y. Li, and F.N. Liu, J. Jilin Norm. Univ. Nat. Sci. Ed. 40, 7 (2019). (in Chinese).

    Google Scholar 

  18. G. Li, L. Wu, F. Li, P. Xu, D. Zhang, and H. Li, Nanoscale 5, 2118 (2013).

    Article  CAS  Google Scholar 

  19. Y.M. Zhu, R.L. Wang, W.P. Zhang, H.Y. Ge, and L. Li, Appl. Surf. Sci. 315, 149 (2014).

    Article  CAS  Google Scholar 

  20. C.C. Wu, Y.G. Sun, Z. Cui, F.G. Song, and J. Wang, J. Phys. Chem. Solids. 140, 109355 (2020).

    Article  CAS  Google Scholar 

  21. L. Yuan, Y.Q. Wang, R. Mema, and G.W. Zhou, Acta Mater. 59, 2491 (2011).

    Article  CAS  Google Scholar 

  22. Ç.T. Tuba, Vacuum 167, 189 (2019).

    Article  Google Scholar 

  23. S.S. Brenner, and G.W. Sears, Acta Metall. 4, 268 (1956).

    Article  CAS  Google Scholar 

  24. S. Sankar, S.K. Sharma, N. An, H. Lee, D.Y. Kim, Y.B. Im, Y.D. Cho, R.S. Ganesh, S. Ponnusamy, P. Raji, and L.P. Purohit, Optik 127, 10727 (2016).

    Article  CAS  Google Scholar 

  25. S.S. Hossain, M. Tarek, T.D. Munusamy, K.M.R. Karim, S.M. Roopan, S.M. Sarkar, C.K. Cheng, and M.M.R. Khan, Environ. Res. 188, 109803 (2020).

    Article  CAS  Google Scholar 

  26. A.M.B. Goncalves, L.C. Campos, A.S. Ferlauto, and R.G. Lacerda, J. Appl. Phys. 106, 241 (2009).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the General Program of the Natural Science Foundation of Hubei Province of China (grant no. 2019CFB747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, J., Jiang, Y. et al. Thermal Oxidation and SILAR Method to Prepare CuO/CdS Composite Nanostructure and Its Enhanced Photocatalytic Properties. Journal of Elec Materi 50, 4762–4769 (2021). https://doi.org/10.1007/s11664-021-08977-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08977-7

Keywords

Navigation