Skip to main content
Log in

Crystal Growth, Optical, Thermal, Mechanical and Laser Damage Threshold Properties of Nonlinear Optical l-Methionine Inserted Potassium Pentaborate (LMKB5) Single Crystal for Optoelectronic Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

l-methionine, boric acid and potassium carbonate were used to prepare l-methionine inserted potassium pentaborate (LMKB5) solution using deionized water as a solvent. A semi-organic crystal was grown by solvent vaporization at lab temperature. Structural analysis was performed on the LMKB5 crystal to affirm cell dimensions. Morphology of the grown crystal was confirmed by scanning electron microscopy (SEM). Energy dispersive x-ray (EDAX) study was used to obtain the elemental composition. The vibrational analysis was performed on the as-grown crystal, which confirms the presence of LMKB5. The optical analysis was performed using a UV–VIS–NIR spectrophotometer to calculate the energy gap of the title material. Thermogravimetry (TG) and differential scanning calorimetry (DSC) analysis are performed on a grown crystal to evaluate the thermal stability of LMKB5 crystal. Differential thermal analysis (DTA) curve affirms that the title material has crystalline nature due to a sharp endothermic peak at 193.49°C. Mechanical strength of the material was estimated using Vicker's microhardness. Laser damage threshold (LDT) studies were carried out to analyze surface damage tolerance stability in crystal. Grown material is essential for a second harmonic generation (SHG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Anis, and G.G. Muley, Opt. Laser Technol. 90, 190 (2017).

    Article  CAS  Google Scholar 

  2. S. Kandhan, P. Krishnan, R. Jagan, S. Aravindhan, S. Srinivasan, and S. Gunasekaran, Opt. Mater. (Amst). 84, 556 (2018).

    Article  CAS  Google Scholar 

  3. R. Arivuselvi, and P.R. Babu, Phys. B Phys. Condens. Matter 533, 17 (2018).

    Article  CAS  Google Scholar 

  4. S.A. Rajasekar, K. Thamizharasan, J.G.M. Jesudurai, D. Prem Anand, and P. Sagayaraj, Mater. Chem. Phys. 84, 157 (2004).

    Article  CAS  Google Scholar 

  5. C.F. Dewey, W.R. Cook, R.T. Hodgson, and J.J. Wynne, Appl. Phys. Lett. 26, 714 (1975).

    Article  CAS  Google Scholar 

  6. C.R. Raja, R. Gobinathan, and F.D. Gnanam, Cryst. Res. Technol. 28, 453 (1993).

    Article  CAS  Google Scholar 

  7. C. Ramki, and R.E. Vizhi, Mater. Chem. Phys. 223, 230 (2019).

    Article  CAS  Google Scholar 

  8. P. Sangeetha, P. Jayaprakash, M. Nageshwari, C. Rathika Thaya Kumari, S. Sudha, M. Prakash, G. Vinitha, and M. Lydia Caroline, Phys. B Condens. Matter 525, 164 (2017).

    Article  CAS  Google Scholar 

  9. M. Fleck, and A.M. Petrosyan, Salts of Amino Acids: Crystallization,Structure and Properties (Cham: Springer, 2014).

    Book  Google Scholar 

  10. S. Natarajan, N.R. Devi, S.D.M.B. Dhas, and S. Athimoolam, Sci. Technol. Adv. Mater. 9, 025012 (2008).

    Article  Google Scholar 

  11. V.C. Vincent, G. Bakiyaraj, K. Kirubavathi, and K. Selvaraju, Chem. Data Collect. 22, 100247 (2019).

    Article  CAS  Google Scholar 

  12. P. Vasudevan, S. Sankar, and S. Gokulraj, AIP Conf. Proc. 1512, 866 (2013).

    Article  CAS  Google Scholar 

  13. W.H. Zachariasen, and H.A. Plettinger, Acta Crystallogr. 16, 376 (1963).

    Article  CAS  Google Scholar 

  14. K. Juliet sheela, and P. Subramanian, Phys. B Condens. Matter 534, 156 (2018).

    Article  CAS  Google Scholar 

  15. S.B.J. Silviya, C.K. Mahadevan, T. Balu, A.M.E. Raj, S. Balakumar, and S.G.J. Andrews, Surf. Interfaces 11, 14 (2018).

    Article  CAS  Google Scholar 

  16. H.X. Liu, Y.X. Liang, and X. Jiang, J. Solid State Chem. 181, 3243 (2008).

    Article  CAS  Google Scholar 

  17. G. Socrates, Infrared and Raman Characteristic Group Frequencies. Tables and Charts (2001).

  18. R.M. Silverstein, F.X. Webster, D.J. Kiemle, and D.L. Bryce, Spectrometric Identification of Organic Compounds (n.d.).

  19. R.L. Shriner, C.K.F. Hermann, T.C. Morrill, D.Y. Curtin, and R.C. Fuson, The Systematic Identification of Organic Compounds (2004).

  20. T. Balakrishnan, G. Bhagavannarayana, and K. Ramamurthi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71, 578 (2008).

    Article  CAS  Google Scholar 

  21. P. Karuppasamy, V. Sivasubramani, M.S. Pandian, and P. Ramasamy, RSC Adv. 6, 109105 (2016).

    Article  CAS  Google Scholar 

  22. S. Chidambaram, A.D.K. Raj, and R. Manimekalai, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020).

    Article  Google Scholar 

  23. B. Jalel, N. Ennaceur, S. Hawech, and R. Henchiri, J. Phys. Chem. Solids 133, 35 (2019).

    Article  CAS  Google Scholar 

  24. B.W. Mott, Microindentation Hardness Testing (London: Butterworths, 1956).

    Google Scholar 

  25. P. Rajasekar, and K. Thamizharasan, J. Mater. Sci. Mater. Electron. 29, 1777 (2017).

    Article  Google Scholar 

  26. R.P. Mathangi, A.R. Prabhakaran, S.N. Jayanthi, and K. Thamizharasan, Mater. Today Proc. 5, 17730 (2018).

    Article  CAS  Google Scholar 

  27. R.E. Smallman, and A.H.W. Ngan, Mod Phys. Metall (Elsevier, 2014), pp. 159–250.

    Book  Google Scholar 

  28. K. Sangwal, Mater. Chem. Phys. 63, 145 (2000).

    Article  CAS  Google Scholar 

  29. S. Suresh, M. Asath Bahadur, and S. Athimoolam, J. Mater. Sci. Mater. Electron. 27, 4578 (2016).

    Article  CAS  Google Scholar 

  30. B. Vengatesan, N. Kanniah, P. Ramasamy, and C.G. Centre, Mater. Sci. Eng. 104, 245 (1988).

    Article  Google Scholar 

  31. W.A. Wooster, Rep. Prog. Phys. 16, 62 (1953).

    Article  Google Scholar 

  32. B. Lal, K.K. Bamzai, P.N. Kotru, and B.M. Wanklyn, Mater. Chem. Phys. 85, 353 (2004).

    Article  CAS  Google Scholar 

  33. M. Lakshmipriya, D.R. Babu, and R.E. Vizhi, IOP Conf. Ser. Mater. Sci. Eng. 73, 12091 (2015).

    Article  Google Scholar 

  34. C. Ramki, and R. Ezhil Vizhi, Mater. Lett. 215, 165 (2018).

    Article  CAS  Google Scholar 

  35. V. Singh, S. Suri, and K.K. Bamzai, J. Ceram. 2013, 280605 (2013).

    Google Scholar 

  36. K. Niihara, R. Morena, and D.P.H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982).

    Article  CAS  Google Scholar 

  37. S.K. Kurtz, and T.T. Perry, J. Appl. Phys. 39, 3798 (1968).

    Article  CAS  Google Scholar 

  38. R. Arivuselvi, and P.R. Babu, Phys. B Condens. Matter 533, 17 (2018).

    Article  CAS  Google Scholar 

  39. P. Karuppasamy, T. Kamalesh, V. Mohankumar, S. Abdul Kalam, M. Senthil Pandian, P. Ramasamy, S. Verma, and S. Venugopal Rao, J. Mol. Struct. 1176, 254 (2019).

    Article  CAS  Google Scholar 

  40. C. Karnan, A.R. Prabakaran, M. Prabhaharan, and G. Vinitha, J. Electron. Mater. 48, 7915 (2019).

    Article  CAS  Google Scholar 

  41. A.N. Vigneshwaran, S. Kalainathan, and C.R. Raja, Opt. Laser Technol. 100, 153 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from Er. A. C. S. Arun Kumar, President of Dr. M.G.R. Educational and Research Institute, Chennai, India, for their support and encouragement.

Funding

There is no funding involved with the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Karnan.

Ethics declarations

Conflict of interest

There is no conflict of interest in the work as declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhaharan, M., Karnan, C., Manivannan, S. et al. Crystal Growth, Optical, Thermal, Mechanical and Laser Damage Threshold Properties of Nonlinear Optical l-Methionine Inserted Potassium Pentaborate (LMKB5) Single Crystal for Optoelectronic Applications. Journal of Elec Materi 50, 4388–4396 (2021). https://doi.org/10.1007/s11664-021-08972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08972-y

Keywords

Navigation