Skip to main content
Log in

Influence of Nucleation Layers on MOVPE Growth of Semipolar (\(11{\bar{2}}2\)) GaN on m-Plane Sapphire

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The influence of the underlying nucleation layer on the properties of semipolar \((11{\bar{2}}2)\) GaN grown on m-plane sapphire by metalorganic vapor-phase epitaxy has been investigated. \((11{\bar{2}}2)\) GaN epilayers of ~ 1 μm thickness were grown using four different initiating sequences: low-temperature AlN and GaN, and high-temperature AlN buffer layers, and directly (high-temperature GaN). The choice of nucleation layer had a pronounced effect on the surface morphology and crystal quality of the overlying GaN epilayer. In comparison, direct growth of \((11{\bar{2}}2)\) GaN without any buffer layer provided the best crystal quality with a rocking-curve \(\omega \) full-width at half-maximum (FWHM) value of 720 arcsec along the \([11{\bar{2}}{\bar{3}}]\) direction and relatively enhanced near-band-edge photoluminescence emission, thus showing this direct growth process to be a simple route for synthesis of semipolar \((11{\bar{2}}2)\) GaN layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Scholz, Semicond. Sci. Technol. 27, 024002 (2012).

    Article  Google Scholar 

  2. R.M. Farrell, E.C. Young, F. Wu, S.P. DenBaars, and J.S. Speck, Semicond. Sci. Technol. 27, 024001 (2012).

    Article  Google Scholar 

  3. T. Wang, Semicond. Sci. Technol. 31, 093003 (2016).

    Article  Google Scholar 

  4. H. Zhong, A. Tyagi, N.N. Fellows, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, and S. Nakamura, Electron. Lett. 43, 825 (2007).

    Article  CAS  Google Scholar 

  5. H. Asamizu, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, and S. Nakamura, Appl. Phys. Express 2, 021002 (2009).

    Article  Google Scholar 

  6. T. Hikosaka, T. Narita, Y. Honda, M. Yamaguchi, and N. Sawaki, Appl. Phys. Lett. 84, 4717 (2004).

    Article  CAS  Google Scholar 

  7. T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, and S. Nakamura, Jpn. J. Appl. Phys. 44, L920 (2005).

    Article  CAS  Google Scholar 

  8. T. Wunderer, P. Brãckner, B. Neubert, F. Scholz, M. Feneberg, F. Lipski, M. Schirra, and K. Thonke, Appl. Phys. Lett. 89, 041121 (2006).

    Article  Google Scholar 

  9. P. Gupta, A.A. Rahman, N. Hatui, M.R. Gokhale, M.M. Deshmukh, and A. Bhattacharya, J. Cryst. Growth 372, 105 (2013).

    Article  CAS  Google Scholar 

  10. M. Khoury, M. Leroux, M. Nemoz, G. Feuillet, J. Zùñiga Pèrez, and P. Vennéguès, J. Cryst. Growth 419, 88 (2015).

    Article  CAS  Google Scholar 

  11. P. Saengkaew, S. Sanorpim, V. Yordsri, C. Thanachayanont, and K. Onabe, J. Cryst. Growth 411, 76 (2015).

    Article  CAS  Google Scholar 

  12. T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, and S. Nakamura, Jpn. J. Appl. Phys. 45, L154 (2006).

    Article  CAS  Google Scholar 

  13. K. Nishizuka, M. Funato, Y. Kawakami, S. Fujita, Y. Narukawa, and T. Mukai, Appl. Phys. Lett. 85, 3122 (2004).

    Article  CAS  Google Scholar 

  14. S. Ploch, M. Frentrup, T. Wernicke, M. Pristovsek, M. Weyers, and M. Kneissl, J. Cryst. Growth 312, 2171 (2010).

    Article  CAS  Google Scholar 

  15. K.R. Song, D.S. Oh, and S.N. Lee, Curr. Appl. Phys. 13, 1643 (2013).

    Article  Google Scholar 

  16. A. Anuar, A.H. Makinudin, O. Al-Zuhairi, N. Chanlek, A.S. Bakar, and A. Supangat, Vacuum 174 (2020).

  17. Y. Zhao, Q. Yan, C.Y. Huang, S.C. Huang, P.S. Hsu, S. Tanaka, C.C. Pan, Y. Kawaguchi, K. Fujito, C.G. Van de Walle, J.S. Speck, S.P. DenBaars, S. Nakamura, and D. Feezell, Appl. Phys. Lett. 100, 201108 (2012).

    Article  Google Scholar 

  18. M. Frentrup, S. Ploch, M. Pristovsek, and M. Kneissl, Phys. Status Solidi B 248, 583 (2011).

    Article  CAS  Google Scholar 

  19. T. Wernicke, C. Netzel, M. Weyers, and M. Kneissl, Phys. Status Solidi C 5, 1815 (2008).

    Article  CAS  Google Scholar 

  20. S. Ploch, J.B. Park, J. Stellmach, T. Schwaner, M. Frentrup, T. Niermann, T. Wernicke, M. Pristovsek, M. Lehmann, and M. Kneissl, J. Cryst. Growth 331, 25 (2011).

    Article  CAS  Google Scholar 

  21. Q. Sun, B. Leung, C.D. Yerino, Y. Zhang, and J. Han, Appl. Phys. Lett. 95, 1003 (2009).

    Google Scholar 

  22. M.J. Kappers, J.L. Hollander, C. McAleese, C.F. Johnston, R.F. Broom, J.S. Barnard, M.E. Vickers, and C.J. Humphreys, J. Cryst. Growth 300, 155 (2007).

    Article  CAS  Google Scholar 

  23. M. Pristovsek, M. Frentrup, Y. Han, and C.J. Humphreys, Phys. Status Solidi B 253, 61 (2016).

    Article  CAS  Google Scholar 

  24. X. Ni, Ü. Özgur, A.A. Baski, H. Morkoç, L. Zhou, D.J. Smith, and C.A. Tran, Appl. Phys. Lett. 90, 011002 (2007).

    Article  Google Scholar 

  25. J.L. Hollander, M.J. Kappers, and C.J. Humphreys, Physica B 401, 307 (2007).

    Article  Google Scholar 

  26. P. de Mierry, N. Kriouche, M. Nemoz, and G. Nataf, Appl. Phys. Lett. 94, 191903 (2009).

    Article  Google Scholar 

  27. N. Kriouche, P. Vennéguès, M. Nemoz, G. Nataf, and P. de Mierry, J. Cryst. Growth 312, 2625 (2010).

    Article  CAS  Google Scholar 

  28. S. Jang, H. Kim, D.S. Kim, S.M. Hwang, J. Kim, and K.H. Baik, Appl. Phys. Lett. 103, 162103 (2013).

    Article  Google Scholar 

  29. B. Leung, Q. Sun, C. Yerinoa, Y. Zhanga, J. Hana, B.H. Kongb, H.K. Chob, K.Y. Liaoc, and Y.L. Lic, J. Cryst. Growth 341, 27 (2012).

    Article  CAS  Google Scholar 

  30. M. Caliebe, T. Meisch, B. Neuschl, S. Bauer, J. Helbing, D. Beck, K. Thonke, M. Klein, D. Heinz, and F. Scholz, Phys. Status Solidi C 11, 525 (2014).

    Article  CAS  Google Scholar 

  31. K. Xing, Y. Gong, X. Yu, J. Bai, and T. Wang, Jpn. J. Appl. Phys. 52, 08JC03 (2013).

    Article  Google Scholar 

  32. C. Jung, J. Jang, J. Hwang, J. Jeong, J. Kim, K. Lee, and O. Nam, J. Cryst. Growth 370, 26 (2013).

    Article  CAS  Google Scholar 

  33. K. Xing, C. Tseng, L. Wang, P. Chi, J. Wang, P. Chen, and H. Liang, Appl. Phys. Lett. 114, 131105 (2019).

    Article  Google Scholar 

  34. N. Hatui, M. Frentrup, A.A. Rahman, A. Kadir, S. Subramanian, M. Kneissl, and A. Bhattacharya, J. Cryst. Growth 411, 106 (2015).

    Article  CAS  Google Scholar 

  35. M.A. Moram, C.F. Johnston, J.L. Hollander, M.J. Kappers, and C.J. Humphreys, J. Appl. Phys. 105, 113501 (2009).

    Article  Google Scholar 

  36. N. Hatui, A.A. Rahman, C.B. Maliakkal, and A. Bhattacharya, J. Cryst. Growth 437, 1 (2016).

    Article  CAS  Google Scholar 

  37. R. Liu, A. Bell, F.A. Ponce, C.Q. Chen, J.W. Yang, and M.A. Khan, Appl. Phys. Lett. 86, 021908 (2005).

    Article  Google Scholar 

  38. C. Netzel, J. Stellmach, M. Feneberg, M. Frentrup, M. Winkler, F. Mehnke, T. Wernicke, R. Goldhahn, M. Kneissl, and M. Weyers, Appl. Phys. Lett. 104, 051906 (2014).

    Article  Google Scholar 

  39. J. Lähnemann, U. Jahn, O. Brandt, T. Flissikowski, P. Dogan, and H.T. Grahn, J. Phys. D Appl. Phys. 47, 423001 (2014).

    Article  Google Scholar 

  40. P. Vennéguès, Z. Bougrioua, and T. Guehne, Jpn. J. Appl. Phys. 46, 4089 (2007).

    Article  Google Scholar 

  41. P. Vennéguès and B. Beaumont, Appl. Phys. Lett. 75(26), 4115 (1999).

    Article  Google Scholar 

  42. M. Biedermann, J.B. Park, T. Niermann, S. Ploch, M. Kneissl, and M. Lehmann, (HR)TEM study of the interface region between semi-polar GaN and m-plane sapphire. Proceedings of the 15th European Microscopy Congress, 16th-21st September 2012, Manchester, UK. PS1.2 (2012). http://www.emc2012.org.uk//documents/Abstracts/Abstracts/EMC2012_0125.pdf.

Download references

Acknowledgments

The authors are grateful to Sandip Ghosh for helpful discussions, Maheshwar Gokhale for help with HRXRD measurements, Amit P. Shah for help with PL measurements, and Rudheer D. Bapat and Shashank C. Purandare for help with TEM imaging of the sample. This work was supported by the Govt. of India through TIFR research grant 12P0168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Azizur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (pdf 3083 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A.A., Hatui, N., Maliakkal, C.B. et al. Influence of Nucleation Layers on MOVPE Growth of Semipolar (\(11{\bar{2}}2\)) GaN on m-Plane Sapphire. Journal of Elec Materi 50, 4533–4539 (2021). https://doi.org/10.1007/s11664-021-08969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08969-7

Keywords

Navigation