Skip to main content
Log in

Functionalization of Silver Nanoparticles with Carbohydrate Derivative for Colorimetric Assay of Thiram

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The surface of silver nanoparticles (Ag NPs) was functionalized with a carbohydrate derivative (glutathione-lactose, GSH-Lac) to form GSH-Lac-Ag NPs for sensing of thiram in real samples with a rapid and sensitive visual readout. This colorimetric assay of thiram relies on the change in the surface plasmon resonance (SPR) band of the GSH-Lac-Ag NPs, resulting in their aggregation by thiram, which leads to a visual change of the GSH-Lac-Ag NPs from yellow to reddish brown. As a result, the SPR band of GSH-Lac-Ag NPs red-shifts from 406 nm to 458 nm, showing good linearity in the range of 0.01 µM to 3.00 µM (R2 = 0.9841) with a limit of detection (LOD) of 3.00 nM. Addition of other pesticides did not show a remarkable red-shift of the SPR band of the GSH-Lac-Ag NPs, indicating their high selectivity as a colorimetric sensor. This method enables a facile and portable analytical platform for on-site detection of thiram in real samples with minimum volume.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.M.A. Valle, C. Santamaría, S.A.S. Machado, and J.M. Fernández, Thiram and picloram as entrapping agents for lead depicted by electrochemical methodsJ. Braz. Chem. Soc. 21, 1052 (2010).

    Article  CAS  Google Scholar 

  2. V.K. Sharma, J.S. Aulakh, and A.K. Malik, Thiram: degradation, applications and analytical methodsJ. Environ. Monit. 5, 717 (2003).

    Article  CAS  Google Scholar 

  3. M.B. Bhavya, R. Prabhu, B.M. Shenoy, P. Bhol, S. Swain, M. Saxena, N.S. John, G. Hegde, and A.K. Samal, Femtomolar detection of thiram via SERS using silver nanocubes as an efficient substrateEnviron. Sci. Nano 7, 3999 (2020).

    Article  CAS  Google Scholar 

  4. J.P. Zubrod, M. Bundschuh, G. Arts, C.A. Brühl, G. Imfeld, A. Knäbel, S. Payraudeau, J.J. Rasmussen, J. Rohr, and A. Scharmüller, Fungicides: an overlooked pesticide classEnviron. Sci. Technol. 53, 3347 (2019).

    Article  CAS  Google Scholar 

  5. M.C. Fisher, D.A. Henk, C.J. Briggs, J.S. Brownstein, L.C. Madoff, S.L. McCraw, and S.J. Gurr, Emerging fungal threats to animal, plant and ecosystem healthNature 484, 186 (2012).

    Article  CAS  Google Scholar 

  6. C. Zhu, X. Wang, X. Shi, F. Yang, G. Meng, Q. Xiong, Y. Ke, H. Wang, Y. Lu, and N. Wu, Detection of dithiocarbamate pesticides with a spongelike surface-enhanced Raman scattering substrate made of reduced graphene oxide-wrapped silver nanocubesACS Appl. Mater. Interfaces 9, 39618 (2017).

    Article  CAS  Google Scholar 

  7. Q. Wang, D. Wu, and Z. Chen, Ag dendritic nanostructures for rapid detection of thiram based on surface-enhanced Raman scatteringRSC Adv. 5, 70553 (2015).

    Article  CAS  Google Scholar 

  8. E.M. Maximiano, F. de Lima, C.A.L. Cardoso, and G.J. Arruda, Modification of carbon paste electrodes with recrystallized zeolite for simultaneous quantification of thiram and carbendazim in food samples and an agricultural formulationElectrochim. Acta. 259, 66 (2018).

    Article  CAS  Google Scholar 

  9. O.M.S. Filipe, M.M. Vidal, A.C. Duarte, and E.B.H. Santos, A solid-phase extraction procedure for the clean-up of thiram from aqueous solutions containing high concentrations of humic substancesTalanta 72, 1235 (2007).

    Article  CAS  Google Scholar 

  10. D. Ringli, and W. Schwack, Selective determination of thiram residues in fruit and vegetables by hydrophilic interaction LC-MSFood Addit. Contam. Part A. 30, 1909 (2013).

    Article  CAS  Google Scholar 

  11. C. Oellig, and W. Schwack, Comparison of HILIC columns for residue analysis of dithiocarbamate fungicidesJ. Liq. Chromatogr. Relat. Technol. 40, 415 (2017).

    Article  CAS  Google Scholar 

  12. A. Waseem, M. Yaqoob, and A. Nabi, Determination of thiram in natural waters using flow-injection with cerium(IV)-quinine chemiluminescence systemLuminescence 25, 71 (2010).

    CAS  Google Scholar 

  13. M. Asghar, M. Yaqoob, N. Haque, and A. Nabi, Determination of thiram and aminocarb pesticides in natural water samples using flow injection with tris(2,2’-bipyridyl)ruthenium(II)-diperiodatoargentate(III) chemiluminescence detectionAnal Sci. 29, 1061 (2013).

    Article  CAS  Google Scholar 

  14. C. Fernandez, A.J. Reviejo, and J.M. Pingarron, Graphite-poly(tetrafluoroethylene) electrodes as electrochemical detectors in flowing systemsAnal. Chim. Acta. 314, 13 (1995).

    Article  CAS  Google Scholar 

  15. A.K. Malik, and W. Faubel, Capillary electrophoretic determination of tet-ramethylthiuram disulphide (thiram)Anal. Lett. 33, 2055 (2000).

    Article  CAS  Google Scholar 

  16. S.K. Kailasa, J.R. Koduru, M.L. Desai, T.J. Park, R.K. Singhal, and H. Basu, Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samplesTrAC Trends Anal. Chem. 105, 106 (2018).

    Article  CAS  Google Scholar 

  17. S.K. Kailasa, K. Kiran, and H.F. Wu, Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometryAnal. Chem. 80, 9681 (2008).

    Article  CAS  Google Scholar 

  18. A. Azzouz, S.K. Kailasa, S.S. Lee, A.J. Rascón, E. Ballesteros, M. Zhang, and K.H. Kim, Review of nanomaterials as sorbents in solid-phase extraction for environmental samplesTrends Anal. Chem. 108, 347 (2018).

    Article  CAS  Google Scholar 

  19. S.K. Kailasa, and H.F. Wu, Nanomaterial-based miniaturized extraction and preconcentration techniques coupled to matrix-assisted laser desorption/ionization mass spectrometry for assaying biomoleculesTrends Anal. Chem. 65, 54 (2015).

    Article  CAS  Google Scholar 

  20. K. Rana, J.R. Bhamore, J.V. Rohit, T.J. Park, and S.K. Kailasa, Ligand exchange reactions on citrate-gold nanoparticles for a parallel colorimetric assay of six pesticidesNew J. Chem. 42, 9080 (2018).

    Article  CAS  Google Scholar 

  21. H. Aldewachi, T. Chalati, M.N. Woodroofe, N. Bricklebank, B. Sharrack, and P. Gardiner, Gold nanoparticle-based colorimetric biosensorsNanoscale 10, 18 (2018).

    Article  CAS  Google Scholar 

  22. V.S.A. Piriya, P. Joseph, S.C.G.K. Daniel, S. Lakshmanan, T. Kinoshita, and S. Muthusamy, Colorimetric sensors for rapid detection of various analytesMater. Sci. Eng. C 78, 1231 (2017).

    Article  Google Scholar 

  23. J.V. Rohit, and S.K. Kailasa, Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host–guest chemistryJ. Nanoparticle Res. 16, 2585 (2014).

    Article  Google Scholar 

  24. S. Rastegarzadeh, and S. Abdali, Colorimetric determination of thiram based on formation of gold nanoparticles using ascorbic acidTalanta 104, 22 (2013).

    Article  CAS  Google Scholar 

  25. S.A. Ghoto, M.Y. Khuhawar, and T.M. Jahangir, others, Applications of copper nanoparticles for colorimetric detection of dithiocarbamate pesticidesJ. Nanostruct. Chem. 9, 77 (2019).

    Article  CAS  Google Scholar 

  26. N. Fahimi-Kashani, and M.R. Hormozi-Nezhad, Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticidesAnal. Chem. 88, 8099 (2016).

    Article  CAS  Google Scholar 

  27. J.R. Bhamore, S. Jha, A.K. Mungara, R.K. Singhal, D. Sonkeshariya, and S.K. Kailasa, One-step green synthetic approach for the preparation of multicolor emitting copper nanoclusters and their applications in chemical species sensing and bioimagingBiosens. Bioelectron. 80, 243 (2016).

    Article  CAS  Google Scholar 

  28. V.K. Sharma, J.S. Aulakh, and A.K. Malik, Fourth derivative spectrophotometric determination of fungicide thiram (tetramethyldithiocarbamate) using sodium molybdate and its applicationTalanta 65, 375 (2005).

    Article  CAS  Google Scholar 

  29. H. Parham, N. Pourreza, and F. Marahel, Determination of thiram using gold nanoparticles and resonance Rayleigh scattering methodTalanta 141, 143 (2015).

    Article  CAS  Google Scholar 

  30. C.H. Zhang, J. Zhu, J.J. Li, and J.W. Zhao, Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soilACS Appl. Mater. Interfaces. 9, 17387 (2017).

    Article  CAS  Google Scholar 

  31. Y. Yu, P. Zeng, C. Yang, J. Gong, R. Liang, Q. Ou, and S. Zhang, Gold-nanorod-coated capillaries for the SERS-based detection of thiramACS Appl. Nano Mater. 2, 598 (2019).

    Article  CAS  Google Scholar 

  32. M. Chen, W. Luo, Q. Liu, N. Hao, Y. Zhu, M. Liu, L. Wang, H. Yang, and X. Chen, Simultaneous in situ extraction and fabrication of surface-enhanced Raman scattering substrate for reliable detection of thiram residueAnal. Chem. 90, 13647 (2018).

    Article  CAS  Google Scholar 

  33. Z. Xiong, M. Lin, H. Lin, and M. Huang, Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juiceCarbohydr. Polym. 189, 79 (2018).

    Article  CAS  Google Scholar 

  34. D. Xiong, and H. Li, Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in waterNanotechnology 19, 465502 (2008).

    Article  Google Scholar 

  35. J.V. Rohit, J.N. Solanki, and S.K. Kailasa, Surface modification of silver nanoparticles with dopamine dithiocarbamate for selective colorimetric sensing of mancozeb in environmental samplesSens. Actuators B Chem. 200, 219 (2014).

    Article  CAS  Google Scholar 

  36. S.K. Menon, N.R. Modi, A. Pandya, and A. Lodha, Ultrasensitive and specific detection of dimethoate using ap-sulphonato-calix [4] resorcinarene functionalized silver nanoprobe in aqueous solutionRSC Adv. 3, 10623 (2013).

    Article  CAS  Google Scholar 

  37. J.V. Rohit, and S.K. Kailasa, 5-Sulfo anthranilic acid dithiocarbamate functionalized silver nanoparticles as a colorimetric probe for the simple and selective detection of tricyclazole fungicide in rice samplesAnal. Methods. 6, 5934 (2014).

    Article  CAS  Google Scholar 

  38. J.R. Bhamore, P. Ganguly, and S.K. Kailasa, Molecular assembly of 3-mercaptopropinonic acid and guanidine acetic acid on silver nanoparticles for selective colorimetric detection of triazophos in water and food samplesSens. Actuators B 233, 486 (2016).

    Article  CAS  Google Scholar 

  39. M. Safarpoor, M. Ghaedi, A. Asfaram, M. Yousefi-Nejad, H. Javadian, H.Z. Khafri, and M. Bagherinasab, Ultrasound-assisted extraction of antimicrobial compounds from Thymus daenensis and Silybum marianum: antimicrobial activity with and without the presence of natural silver nanoparticlesUltrason. Sonochem. 42, 76 (2018).

    Article  CAS  Google Scholar 

  40. E. Solaymani, M. Ghaedi, H. Karimi, M.H.A. Azqhandi, and A. Asfaram, Intensified removal of Malachite green by AgOH-AC nanoparticles combined with ultrasound: modeling and optimizationAppl. Organom. Chem. 31, 3857 (2017).

    Article  Google Scholar 

  41. J.V. Rohit, H. Basu, R.K. Singhal, and S.K. Kailasa, Development of p-nitroaniline dithiocarbamate capped gold nanoparticles-based microvolume UV-visible spectrometric method for facile and selective detection of quinalphos insecticide in environmental samplesSens. Actuators B 237, 826 (2016).

    Article  CAS  Google Scholar 

  42. M.R. Kateshiya, N.I. Malek, Z.V.P. Murthy, and S.K. Kailasa, Designing of glutathione-lactose derivative for the fabrication of gold nanoclusters with red fluorescence: sensing of Al3+ and Cu2+ ions with two different mechanisms. Opt. Mater. 100, 109704 (2020).

    Article  CAS  Google Scholar 

  43. Health Canada Pest Management Regulatory Agency, Health Canada, February 2016. https://www.hortcouncil.ca/wp-content/uploads/2016/04/Thiram.pdf.

  44. M.A. Hernandez-Olmos, L. Agu, P. Yanez-Sedeno, and J.M. Pingarron, Analytical voltammetry in low-permitivity organic solvents using disk and cylindrical microelectrodes, determination of thiram in ethyl acetateElectrochim. Acta. 46, 289 (2000).

    Article  CAS  Google Scholar 

  45. K. Novakova, T. Navratil, J.J. Dytrtova, and J. Chylkova, The use of copper solid amalgam electrodes for determination of the pesticide thiramJ. Solid State Electrochem. 17, 1517 (2013).

    Article  CAS  Google Scholar 

  46. J.S. Aulakh, A.K. Malik, and R.K. Mahajan, Solid phase microextraction- high pressure liquid chromatographic determination of nabam, thiram and azamethiphos in water samples with UV detection: preliminary dataTalanta 66, 266 (2005).

    Article  Google Scholar 

  47. C. Fernandez, A.J. Reviejo, L.M. Polo, and J.M. Pingarron, HPLC-electrochemical detection with graphite-poly (tetrafluoroethylene) electrode determination of the fungicides thiram and disulfiramTalanta 43, 1341 (1996).

    Article  CAS  Google Scholar 

  48. A. Peruga, S. Grimalt, F.J. Lopez, J.V. Sancho, and F. Hernandez, Optimisation and validation of a specific analytical method for the determination of thiram residues in fruits and vegetables by LC-MS/MSFood Chem. 135, 186 (2012).

    Article  CAS  Google Scholar 

  49. T. Cajka, K. Riddellova, P. Zomer, H. Mol, and H. Jana, Direct analysis of dithiocarbamate fungicides in fruit by ambient mass spectrometryFood Addit. Contam. A 28, 1372 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Department of Science and Technology, Government of India under Fast-Track Young Scientist Scheme (No. SR/FT/CS-54/2010). The authors greatly acknowledge Gharda Chemicals Ltd, Super Crop Safe Ltd, Atul Ltd, and United Phosphorus Ltd for providing pesticide samples for research purposes. V.D., M.K., and S.K.K. acknowledge the Director, SVNIT, Surat, India for providing necessary facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar Kailasa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material:

Supplementary file 1 (PDF 971 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhavle, V., Kateshiya, M.R., Park, TJ. et al. Functionalization of Silver Nanoparticles with Carbohydrate Derivative for Colorimetric Assay of Thiram. J. Electron. Mater. 50, 3676–3685 (2021). https://doi.org/10.1007/s11664-021-08875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08875-y

Keywords

Navigation