Skip to main content
Log in

Reliability Simulation and Life Prediction of TSV Under a Thermoelectric Coupling Field in a 3D Integrated Circuit

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The reliability of through silicon via (TSV) in a 3-dimensional integrated circuit (3D IC) determines whether the electronic system can operate continuously and steadily. The finite element method was adopted to study the response of TSV to thermoelectric coupling, the effect of different dielectric layer materials and the filling degree of carbon nanotubes (CNT) on TSV reliability were investigated, respectively. Through orthogonal simulation experiments, the high reliability of a type of TSV with benzocyclobutene (BCB) dielectric layer and filling by a coaxial hybrid CNT bundle was verified, and its lifetime was predicted by the failure of the physical model. The simulation results show that the most important influence factor to TSV reliability is the depth-to-width ratio, the second important factor is the choice of dielectric material, and the least important factor is the filling degree of CNT. The parameter values with the optimum reliability are as follows: the depth-to-width ratio of copper column is 20, the dielectric material is BCB, and the CNT filling degree is 4–8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Lau, Microelectron. Int. 28, 8 (2011).

    Article  CAS  Google Scholar 

  2. J.H. Lau, Reliability of RoHS-Compliant 2D and 3D IC Interconnects, 1st ed., (New York: McGraw Hill Education, 2011).

    Google Scholar 

  3. Y.X. Pan, F. Li, H. Hu, J.H. Li, and W.H. Zhu, Microelectron. Reliab. 70, 97 (2017).

    Article  CAS  Google Scholar 

  4. Y. Zhao, C. Hao, and T. Yoshimura, IEEE Trans. Electron Devices 66, 625 (2019).

    Article  CAS  Google Scholar 

  5. J.E. Luan, T.Y. Tee, E. Pek, C.T. Lim, Z. Zhong, and J. Zhou, IEEE Trans. Comp. Packag. Technol. 29, 449 (2006).

    Article  Google Scholar 

  6. Q. Guo, M. Zhao, and H.F. Wang, Mech. Res. Commun. 32, 351 (2005).

    Article  Google Scholar 

  7. T. Eckert, M. Krüger, W.H. Müller, N.F. Nissen, H. Reichl, in 60th Electronic Components and Technology Conference Proceedings (2010), p. 1209.

  8. X. Fu, Y.F. En, B. Ma, R.H. Yao, B. Zhou, and Y. Huang, IOP Conf. Ser. Mater. Sci. Eng. 439, 022002 (2018).

    Article  Google Scholar 

  9. C.K. Jiang, L. Nie, W. Jia, and Y.N. Zhong, in 4th International Conference on Energy Materials and Environment Engineering Proceedings (2018), p. 04026.

  10. T.Y. Ye, L.G. Hou, S.E. Zhang, J.H. Wang, and X.H. Peng, in IEEE 12th International Conference on ASIC (ASICON) Proceedings (2017), p. 678

  11. Z.Q. Cheng, Y.T. Ding, L. Xiao, X.H. Wang, and Z.M. Chen, Microelectron. Reliab. 103, 113512 (2019).

    Article  CAS  Google Scholar 

  12. C.S. Selvanayagam, J.H. Lau, X.W. Zhang, S.K.W. Seah, K. Vaidyanathan, and T C. Chai, in 58th Electronic Components and Technology Conference Proceedings (2008), p. 1073.

  13. Y.H. Yuan, L.M. Gao, H. Wu, and M. Li, Semicond. Optoelectron. 34, 255 (2013).

    Google Scholar 

  14. T. Shiwani, N. Satej, K. Abhijit, and T. Sandeep, in ASME Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems Proceedings (2012), p. 75.

  15. Z.Y. Zhen, H.F. Li, and W.Q. Zhang, in IEEE 16th Electronics Packaging Technology Conference (EPTC) Proceedings (2014), p. 684.

  16. Y.X. Zhang, J.K. Wang, and S.J. Yu, in 19th International Conference on Electronic Packaging Technology (ICEPT) Proceedings (2018), p. 883

  17. W.H.J. Edwin, S. Elisabeth, and I. Olle, Science 290, 1540 (2000).

    Article  Google Scholar 

  18. F. Qin, J. Wang, L.X. Wan, D.Q. Yu, L.Q. Cao, and W.H. Zhu, Semicond. Technol. 37, 825 (2012).

    CAS  Google Scholar 

  19. G.V.D. Plas, P. Limaye, A. Mercha, H. Oprins, C. Torregiani, S. Thijs, D. Linten, M. Stucchi, K. Guruprasad, D. Velenis, D. Shinichi, V. Cherman, B. Vandevelde, V. Simons, I.D. Wolf, R. Labie, D. Perry, S. Bronckers, N. Minas, M. Cupac, W. Ruythooren, J.V. Olmen, A. Phommahaxay, M.P.T. Broeck, A. Opdebeeck, M. Rakowski, B.D. Wachter, M. Dehan, M. Nelis, R. Agarwal, W. Dehaene, Y. Travaly, P. Marchal, and E. Beyne, in IEEE International Solid-State Circuits Conference (ISSCC) Proceedings (2010), p. 148.

  20. J.H. Lau, Through-Silicon Vias for 3D Integration, 1st ed., (Beijing: Chemical Industry Press, 2014).

    Google Scholar 

  21. S. Wiese, and S. Rzepka, Microelectron. Reliab. 44, 1893 (2004).

    Article  CAS  Google Scholar 

  22. W. Engelmaier, IEEE Trans. Compon. Hybrids Manuf. Technol. 6, 232 (1983).

    Article  Google Scholar 

  23. T.H. Low and J.H.L. Pang, in The 5th Electronics Packaging Technology Conference (EPTC) Proceedings (2003), p. 791.

  24. W.S. Zhao, J. Zheng, Y. Hu, S.L. Sun, G.F. Wang, L.X. Dong, L.Y. Yu, L.L. Sun, and W.Y. Yin, IEEE Trans. Nanotechnol. 15, 506 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang He.

Ethics declarations

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant Number 61106062), the Fundamental Research Funds for the Central Universities (Grant Number JB181409), the Equipment Pre-Research Project of China (Grant Number 41402010102), and Yong Talent fund of University Association for Science and Technology in Shaanxi, China (Grant Number 20180117).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, H., He, L., Chen, H. et al. Reliability Simulation and Life Prediction of TSV Under a Thermoelectric Coupling Field in a 3D Integrated Circuit. J. Electron. Mater. 50, 3592–3602 (2021). https://doi.org/10.1007/s11664-021-08866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08866-z

Keywords

Navigation