Skip to main content
Log in

A Composition-Dependent Unified Analytical Model for Quaternary InAlGaN/GaN HEMTs for pH Sensing

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Group III–V material alloys such as gallium nitride (GaN) with piezoelectric and pyroelectric properties are used for designing advanced devices suitable for harsh surroundings such as high temperature and acidic ambience. In the present paper, we introduce a unified model using InAlGaN quaternary alloy in the barrier layer to analyze the performance of pH sensors based on high electron-mobility transistors (HEMTs) Our model is used to accurately calculate the threshold voltage, the sheet charge concentration and thus the drain current, in response to changes in the pH values of the electrolyte put in the gate area of the InAlGaN/GaN heterostructure based sensor. We have taken three devices for our studies with varying In mole fraction from 0% to 16% and Al mole fraction from 23% to 74%. The sensitivity of a HEMT based pH sensor depends on its transconductance. The maximum transconductance values of the InAlGaN/GaN devices were found to be much higher than those of the AlGaN/GaN HEMT devices. A theoretical sensitivity of 1.3 mA/pH was achieved for the quaternary structures. Our model shows good agreement with the experimental data available in literature, presenting less than 1.2% root mean square error in almost all the devices. We observe that HEMTs based on the InAlGaN/GaN structures have better sensitivity than the AlGaN/GaN structures in pH sensing applications. Our findings may be used in designing quaternary HEMT based novel pH sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

taken from Ref. 22.

Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. L. Manjakkal, D. Szwagierczak, and R. Dahiya, Prog. Mater. Sci. 109, 100635 (2020).

    Article  CAS  Google Scholar 

  2. S. Taheri, Constr. Build Mater. 204, 492 (2019).

    Article  Google Scholar 

  3. M. Singh, R.S. Patkar, M. Vinchurkarand, and M.S. Baghini, IEEE Sens. J. 20, 47 (2019).

    Article  Google Scholar 

  4. O. Korostynska, K. Arshak, E. Gill, and A. Arshak, IEEE Sens. J. 8, 20 (2007).

    Article  Google Scholar 

  5. L. Manjakkal, S. Dervinand, and R. Dahiya (2020) RSC Adv.; 10(15):8594

    Article  CAS  Google Scholar 

  6. Q. Cheng, M. Wang, M. Tao, R. Yin, Y. Li, N. Yang, W. Xu, C. Gao, Y. Hao, and Z. Yang, IEEE Electr. Device L 41, 485 (2020).

    Article  CAS  Google Scholar 

  7. M.I. Khan, K. Mukherjee, R. Shoukat, and H. Dong, Microsyst . Technol. 23, 4391 (2017).

    Article  CAS  Google Scholar 

  8. M.T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G.C. Moore, P.J. Murzynowski, and C. Dagdeviren, Chem. Rev. 119, 5248 (2019).

    Article  CAS  Google Scholar 

  9. C. Zhang, P. Zhang, X. Ma and J. Shi, 2nd International Conference on Frontiers of Sensors Technologies (ICFST)IEEE (2017), pp. 95-98.

  10. S. J. Pearton, F. Ren and B. H. Chu, in State of the Art in Biosensors: Environmental and Medical Applications, ed. by Toonika Rinken, (IntechOpen 2013), pp-2287.

  11. S.Turuvekere, N. Karumuri, A. Azizur Rahman, A. Bhattacharya, A. D. Gupta, and N. D. Gupta, IEEE Trans. Electron. Dev. 60(10), 3157 (2013).

    Article  CAS  Google Scholar 

  12. M. Stutzmann, G. Steinhoff, M. Eickhoff, O. Ambacher, C. E. Nebel, J. Schalwig, R. Neuberger and G. Müller, Diam Relat. Mater. 11(3-6), 886 (2002).

    Article  CAS  Google Scholar 

  13. R. Mehandru, B. Luo, B.S. Kang, J.H. Kim, F. Ren, S.J. Pearton, and J.I. Chyi, Solid State Electron. 48, 351 (2004).

    Article  CAS  Google Scholar 

  14. T. Kokawa, T. Sato, H. Hasegawa and T. Hashizume, J. Vac. Sci. Technol. B 24 (4), 1972 (2006).

    Article  CAS  Google Scholar 

  15. M.S.Z. Abidin, A.M. Hashim, M.E. Sharifabad, S. Fadzli, A. Rahman, and T. Sadoh, Sensors 11, 3067 (2011).

    Article  CAS  Google Scholar 

  16. J.Y. Pyo, J.H. Jeon, Y. Koh, C.Y. Cho, H.H. Park, K.H. Park, S.W. Lee, and W.J. Cho, AIP Adv. 8, 085106 (2018).

    Article  Google Scholar 

  17. Y. Dong, D.H. Son, Q. Dai, J.H. Lee, C.H. Won, J.G. Kim, D. Chen, J.H. Lee, H. Lu, R. Zhang, and Y. Zheng, Sensors 18, 1314 (2018).

    Article  Google Scholar 

  18. I. Sanyal, Y.C. Lee, Y.C. Chen, and J.I. Chyi, Appl. Phys. Lett. 114, 222103 (2019).

    Article  Google Scholar 

  19. N. M. Shrestha, C. H. Chen, Z. M. Tsai, Y. Li, J. H. Tarng and S. Samukawa, in IEEE International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), (2019), pp 1-4.

  20. F.G. McIntosh, K.S. Boutros, J.C. Roberts, S.M. Bedair, E.L. Piner, and N.A. El Masry, Appl. Phys. Lett. 68, 40 (1996).

    Article  CAS  Google Scholar 

  21. E.L. Piner, F.G. McIntosh, J.C. Roberts, M.E. Aumer, V.A. Joshkin, S.M. Bedair, and N.A. El-Masry, MRS Internet J N S R 1, 43 (1996).

    Google Scholar 

  22. N. Ketteniss, L. Rahimzadeh Khoshroo, M. Eickelkamp, M. Heuken, H. Kalisch, R.H. Jansen, and A. Vescan (2010) Semicond. Sci. Technol.; 25(7): 075013

    Article  Google Scholar 

  23. J.H. Hwang, S.M. Kim, J.M. Woo, S.M. Hong, and J.H. Jang, Phys. Status Solidi A 213, 889 (2016).

    Article  CAS  Google Scholar 

  24. E. Dogmus, R. Kabouche, S. Lepilliet, A. Linge, M. Zegaoui, H. Ben-Ammar, M.P. Chauvat, P. Ruterana, P. Gamarra, C. Lacam, and M. Tordjman, Electronics 5, 31 (2016).

    Article  CAS  Google Scholar 

  25. L. Ravi, and B. Krishnan, Optik 178, 66 (2019).

    Article  CAS  Google Scholar 

  26. A. Minj, D. Skuridina, D. Cavalcoli, A. Cros, P. Vogt, M. Kneissl, C. Giesen, and M. Heuken, Mater. Sci. Semicond. Process. 55, 26 (2016).

    Article  CAS  Google Scholar 

  27. M. Bayer, C. Uhl, and P. Vogl, J. Appl. Phys. 97, 033703 (2005).

    Article  Google Scholar 

  28. M. Sciullo, M. Choudhury, E. Patrick, and M.E. Law, ECS Trans. 75, 259 (2016).

    Article  CAS  Google Scholar 

  29. S. Rabbaa, and J. Stiens, J. Phys. D Appl. Phys. 45, 475101 (2012).

    Article  Google Scholar 

  30. R. Anvari, D. Spagnoli, G.A. Umana-Membreno, G. Parish, and B. Nener, Appl. Surf. Sci. 452, 75 (2018).

    Article  CAS  Google Scholar 

  31. D. Godwinraj, H. Pardeshi, S.K. Pati, N. Mohankumar, and C.K. Sarkar, Superlattices Microstruct. 54, 188 (2013).

    Article  CAS  Google Scholar 

  32. H.R. Mojaver, F. Manouchehri, and P. Valizadeh, J. Appl. Phys. 119, 154502 (2016).

    Article  Google Scholar 

  33. Y. Li, J. Zhang, W. Wan, Y. Zhang, Y. Nie, J. Zhang, and Y. Hao, Physica E 67, 77 (2015).

    Article  CAS  Google Scholar 

  34. Y. Li, J. Zhang, G. Liu, R. Quan, X. Duan, J. Zhang, and Y. Hao, AIP Adv. 7, 105109 (2017).

    Article  Google Scholar 

  35. K.T. Upadhyay, and M.K. Chattopadhyay, Mater. Today-Proc. 19, 205 (2019).

    Article  Google Scholar 

  36. G. Parish, F.L.M Khir, N... Radha Krishnan, J. Wang, J.S. Krisjanto, H. Li, G.A. Umana-Membreno, S. Keller, UK Mishra, M.V. Baker, B.D. Nener, and M. Myers (2019) Sensor Actuat B-Chem. 287, 250 (2019).

    Article  CAS  Google Scholar 

  37. H. Zhang, J. Tu, S. Yang, K. Sheng, and P. Wang, Talanta 205, 120134 (2019).

    Article  CAS  Google Scholar 

  38. P. Murugapandiyan, A. Mohanbabu, V.R. Lakshmi, M. Wasim, and M. Sundaram, Journal of Elec Materi 49, 524 (2020).

    Article  CAS  Google Scholar 

  39. F.M. Yigletu, S. Khandelwal, T.A. Fjeldly, and I. Benjamín, IEEE Trans. Electron Devices 60, 3746 (2013).

    Article  CAS  Google Scholar 

  40. N.S. Swamy, and A.K. Dutta, IEEE T Electron Dev. 65, 936 (2018).

    Article  CAS  Google Scholar 

  41. R. Narang, M. Saxena, and M. Gupta, IEEE Trans. Electron Devices 64, 1742 (2017).

    Article  Google Scholar 

  42. Y. Xu, and M.A. Schoonen, Am. Mineral. 85, 543 (2000).

    Article  CAS  Google Scholar 

  43. M. Kosmulski, J Colloid Interface Sci. 238, 225 (2001).

    Article  CAS  Google Scholar 

  44. K.T. Upadhyay, and M.K. Chattopadhyay, Mater. Scie. Eng.: B, 263, 114849 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju K. Chattopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, K.T., Chattopadhyay, M.K. A Composition-Dependent Unified Analytical Model for Quaternary InAlGaN/GaN HEMTs for pH Sensing. J. Electron. Mater. 50, 3392–3405 (2021). https://doi.org/10.1007/s11664-021-08836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08836-5

Keywords

Navigation