Skip to main content
Log in

Comparison from Simulated Al0.3Ga0.7As/GaAs/Ge and Al0.3Ga0.7As/GaAs/Si/Ge to Experimental InGaP/GaAs/InGaNAsSb/Ge for Optimized Utilization of the Solar Spectrum

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 27 October 2021

This article has been updated

Abstract

To make full use of the solar spectrum, the performances of Al0.3Ga0.7As/GaAs/Ge and Al0.3Ga0.7As/GaAs/Si/Ge have been simulated using a one-dimensional device simulator called personal computer oe dimension (PC1D). The dependencies of simulated current density–voltage (JV) and external quantum efficiency (EQE) results on the thicknesses of each sub-cell have been thoroughly analyzed to determine the preferred thickness. Compared to Al0.3Ga0.7As/GaAs/Ge (1.5/5/50 μm), Al0.3Ga0.7As/GaAs/Si (1.5/5/180 μm) has an increase of 0.36 V for open-circuit voltage (Voc) but a slight decrease of 1.55 mA/cm2 for short-circuit current density (Jsc). Subsequently, a monolithic InGaP/GaAs/InGaNAsSb (1.9/1.42/1 eV, 3 J) cell has been mechanically stacked on a Ge cell with four terminals. The Jsc value of 14 mA/cm2 and 6.5 mA/cm2 is calculated for each sub-cell of 3 J cell and bottom Ge cell with integration of EQE measurements. In addition, the TiO2/SiO2/TiO2 (150 nm/1 µm/150 nm, trilayer) interface provides a thermal conductance (2.9 × 106 W K−1) comparable to the direct bond interface. It is believed that the architecture of InGaP/GaAs/InGaNAsSb on the Ge cell with a trilayer interface between is the preferred choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. D.T. Rover, P.A. Basore, and G.M. Thorson, Solar cell modeling on personal computers. IEEE Photovolt. Spec. Conf. 18, 703 (1985).

    Google Scholar 

  2. P.A. Basore, D.T. Rover, and A.W. Smith, PC-1D version 2: enhanced numerical solar cell modelling. IEEE Photovolt. Spec. Conf. 18, 389 (1988).

    Google Scholar 

  3. P.A. Basore, PC-1D version 3: improved speed and convergence. IEEE Photovolt. Spec. Conf. 16, 299 (1991).

    Google Scholar 

  4. P.A. Basore and D.A. Clugston, PC1D version 4 for windows: from analysis to design. IEEE Photovolt. Spec. Conf. 12, 377 (1996).

    Google Scholar 

  5. D.A. Clugston and P.A. Basore, PC1D version 5: 32-bit solar cell modeling on personal computers. IEEE Photovolt. Spec. Conf. 16, 207 (1997).

    Google Scholar 

  6. X. Cai, X. Zhou, Z. Liu, F. Jiang, and Yu Qingchun, An in-depth analysis of the silicon solar cell key parameters’ optimal magnitudes using PC1D simulations. Optik 164, 105 (2018).

    Article  CAS  Google Scholar 

  7. S. Sepeai, S.H. Zaidi, M.K.M. Desa, M.Y. Sulaiman, N.A. Ludin, M.A. Ibrahim, and K. Sopian, Design optimization of bifacial solar cell by PC1D simulation. J. Energy Tech. Policy 3, 5 (2013).

    Google Scholar 

  8. M. Belarbi, A. Benyoucef, and B. Benyoucef, Simulation of the solar cells with PC1D, application to cells based on silicon. Adv. Energy Int. J. 1, 1 (2014).

    Google Scholar 

  9. A.B. Nawale, R.A. Kalal, A.R. Chavan, T.D. Dongale, and R.K. Kamat, Numerical investigation of spatial effects on the silicon solar cell. J. Nano-Electron. Phys. 8, 02002 (2016).

    Article  Google Scholar 

  10. P. Panek, The influence of the base material parameters on quantum and photoconversion efficiency of the Si solar cells. Arch. Metall. Mater. 61, 1889 (2016).

    Article  CAS  Google Scholar 

  11. S.I. Sato, H. Miyamoto, M. Imaizumi, K. Shimazaki, C. Morioka, K. Kawano, and T. Ohshima, Degradation modeling of InGaP/GaAs/Ge triple-junction solar cells irradiated with various-energy protons. Sol. Energy Mater. Sol. Cells 93, 768 (2009).

    Article  CAS  Google Scholar 

  12. X. Sheng, C.A. Bower, S. Bonafede, J.W. Wilson, B. Fisher, M. Meitl, H. Yuen, S. Wang, L. Shen, A.R. Banks, C.J. Corcoran, R.G. Nuzzo, S. Burroughs, and J.A. Rogers, Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. Nat. Mater. 13, 593 (2014).

    Article  CAS  Google Scholar 

  13. L. Shen, Y. Shen, and F. Li, Optimized utilization of NIR spectrµm with interfacial TiO2/SiO2/TiO2 trilayer in hybrid-integrated multijunction architecture. Sol. Energy Mater. Sol. Cells 160, 425 (2017).

    Article  CAS  Google Scholar 

  14. L. Shen, H. Li, X. Meng, and F. Li, Transfer printing of fully formed microscale InGaP/GaAs/InGaNAsSb cell on Ge cell in mechanically-stacked quadruple-junction architecture. Sol. Energy 195, 6 (2020).

    Article  CAS  Google Scholar 

  15. A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, and J.A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24, 5284 (2012).

    Article  CAS  Google Scholar 

  16. T. Sumaryada, N.E. Damayanti, S. Rohaeni, H. Syafutra, I.A. Maddu, H. Hardhienata, and H. Alatas, Modeling the thermal response of Al0.3Ga0.7As/GaAs/Ge multijunction solar cells. J. Phys: Conf. Ser. 877, 012030 (2017).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu (No.BK20170288) and the National Natural Science Foundation of China (No. 51775544, U1508210).We thank Xing Sheng for constructive advice on measurements. We thank Semprius company for supplying cell samples. We thank Professor John Rogers for helpful instruction.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Shen or Chusheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Tian, Y., Shen, L. et al. Comparison from Simulated Al0.3Ga0.7As/GaAs/Ge and Al0.3Ga0.7As/GaAs/Si/Ge to Experimental InGaP/GaAs/InGaNAsSb/Ge for Optimized Utilization of the Solar Spectrum. J. Electron. Mater. 50, 2005–2014 (2021). https://doi.org/10.1007/s11664-020-08722-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08722-6

Keywords

Navigation