Skip to main content

Advertisement

Log in

Influence of Co2+ on the Structure, Conductivity, and Electrochemical Stability of Poly(Ethylene Oxide)-Based Solid Polymer Electrolytes: Energy Storage Devices

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present work, using a simple solution cast technique, a series of poly(ethylene oxide) (PEO)-doped cobalt chloride (CoCl2) solid polymer electrolytes (SPEs) were successfully prepared. The effect of dopant on the morphology, structure, thermal, and electrochemical stability of the PEO films was systematically studied, and their ionic conductivity was examined. The Fourier transform infrared spectroscopy data provide evidence of the complex nature and existence of various microscopic interactions. The PEO ionic conductivity of 8.6 × 10−8 S cm−1 was found to increase to 3.5 × 10−3 S cm−1 upon the inclusion of 5 wt.% of CoCl2 at 303 K. An effort was made to understand the enhanced conductivity. Several studies were utilized to better understand the fundamental interplay of ion content and segmental motion using the Vogel–Tammann–Fulcher equation with typical investigations based on the fit of temperature-dependent conductivity data. The activation energy (Ea) decreased with increasing dopant concentration. The PCL5 transfer number (tion) was determined to be 0.93, evidence of the ionic nature of the doped electrolyte. Further, the purity and electrochemical stability of SPEs were studied using cyclic voltammetry and chronocoulometry. The thermal analysis showed reduced crystallinity and changes in glass transition and melting temperature at lower temperature, indicating enhanced amorphous content, thus confirming faster ion conduction. These SPEs with excellent electrical performance are promising candidates for electrolytes in solid-state batteries and other energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Armand, Solid State Ion. 69, 309 (1994).

    Article  CAS  Google Scholar 

  2. K.S. Ngai, S. Ramesh, K. Ramesh, and J.C. Juan, Ionics 22, 1259 (2016).

    Article  CAS  Google Scholar 

  3. J. Mindemark, M.J. Lacey, T. Bowden, and D. Brandell, Prog. Polym. Sci. 81, 114 (2018).

    Article  CAS  Google Scholar 

  4. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G. Wang, Chem 5, 2326 (2019).

    Article  CAS  Google Scholar 

  5. D.E. Fenton, J.M. Parker, and P.V. Wright, Polymer 14, 589 (1973).

    Article  CAS  Google Scholar 

  6. M. Armand, M. Duclot, and J. Chabagno, In proceedings of the second international meeting on solid state electrolytes (St Andrews, Scotland) (1978)

  7. S. Chapi, J. Sci. Adv. Mater. Dev. 5, 322 (2020).

    Google Scholar 

  8. P.V. Wright, Br. Polym. J. 7, 319 (1975).

    Article  CAS  Google Scholar 

  9. C. Berthier, W. Gorecki, M. Minier, M.B. Armand, J.M. Chabagno, and P. Rigaud, Solid State Ion. 11, 91 (1983).

    Article  CAS  Google Scholar 

  10. F. Croce, G.B. Appetecchi, L. Persi, and B. Scrosati, Nature 394, 456 (1998).

    Article  CAS  Google Scholar 

  11. Q. Xiao, C. Deng, Q. Wang, Q. Zhang, Y. Yong, and R. Shijie, ACS Omega 4, 95 (2019).

    Article  CAS  Google Scholar 

  12. K.P. Subir, M. Mukhopadhyay, and R. Ray, Ionics 25, 627 (2019).

    Article  CAS  Google Scholar 

  13. P.C. Barbosa, M.M. Silva, M.J. Smith, A. Gonçalves, and E. Fortunato, Thin Solid Films 516, 1480 (2008).

    Article  CAS  Google Scholar 

  14. A.F. Nogueira, J.R. Durrant, and M.A. De Paoli, Adv. Mater. 13, 826 (2001).

    Article  CAS  Google Scholar 

  15. J. Mindemark and L. Edman, J. Mater. Chem. C 4, 420 (2016).

    Article  CAS  Google Scholar 

  16. D. Roy, J.N. Cambre, and B.S. Sumerlin, Prog. Polym. Sci. 35, 278 (2010).

    Article  CAS  Google Scholar 

  17. A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, and M.R. Palacin, J. Mater. Chem. A 3, 22 (2015).

    Article  CAS  Google Scholar 

  18. L. Meabe, T.V. Huynh, D. Mantione, L. Porcarelli, L. Chunmei, L.A. O’Dell, H. Sardon, M. Armand, M. Forsyth, and D. Mecerreyes, Electrochim. Acta 302, 414 (2019).

    Article  CAS  Google Scholar 

  19. A. Arya, M. Sadiq, and A.L. Sharma, Polym. Bull. 76, 5149 (2019).

    Article  CAS  Google Scholar 

  20. A. Arya and A.L. Sharma, Ionics 23, 497 (2017).

    Article  CAS  Google Scholar 

  21. Y. Liping, M. Jun, J. Zhang, Z. Jingwen, S. Dong, Z. Liu, G. Cui, and L. Chen, Energy Storage Mater. 5, 139 (2016).

    Article  Google Scholar 

  22. B.A. Shujahadeen, B.M. Rawezh, M.A. Brza, N.H. Amir, H.A. Ahmad, Y.A. Faidhalla, and M.F.Z. Kadir, Results Phys. 13, 102220 (2019).

    Article  Google Scholar 

  23. S. Chapi, S. Ragu, and H. Devendrappa, Ionics 22, 803 (2016).

    Article  CAS  Google Scholar 

  24. B. Jinisha, A.M. Anilkumar, M. Manoj, A. Abhilash, V.S. Pradeep, and S. Jayalekshmi, Ionics 24, 1675 (2018).

    Article  CAS  Google Scholar 

  25. S. Chapi and H. Devendrappa, J. Mater. Sci. Mater. Electron. 27, 11974 (2016).

    Article  CAS  Google Scholar 

  26. X.J. Wang, L.Z. Zhang, and L.X. Pei, J. Appl. Polym. Sci. 131, 39550 (2014).

    Article  CAS  Google Scholar 

  27. L. Porcarelli, C. Gerbaldi, F. Bella, and J.R. Nair, Sci. Rep. 6, 19892 (2016).

    Article  CAS  Google Scholar 

  28. M.D. Singh, B. Nayak, B. Choudhury, S. Anand, and D. Anshuman, Solid State Ion. 311, 20 (2017).

    Article  CAS  Google Scholar 

  29. T. Eriksson, J. Mindemark, M. Yue, and D. Brandell, Electrochim. Acta 300, 489 (2019).

    Article  CAS  Google Scholar 

  30. T.A. Hawzhin and O.G. Abdullah, Results Phys. 16, 102861 (2020).

    Article  Google Scholar 

  31. J. Cheng, H. Guangmei, Q. Sun, Z. Liang, X. Xiaoyan, G. Jianguang, D. Linna, L. Deping, N. Xiangkun, Z. Zeng, S. Pengchao, and C. Lijie, Solid State Ion. 345, 115156 (2020).

    Article  CAS  Google Scholar 

  32. S. Shufeng, M.D. Hai, M.K. Alexander, and N. Hu, Sci. Rep. 6, 32330 (2016).

    Article  CAS  Google Scholar 

  33. R. Cheerla and M. Krishnan, Polymer 155, 136 (2018).

    Article  CAS  Google Scholar 

  34. S. Chapi, S. Raghu, V. Mini, K. Archana, S. Thomas, and H. Devendrappa, Macromol. Symp. 361, 129 (2016).

    Article  CAS  Google Scholar 

  35. A.L. Sharma, N. Shukla, and A.K. Thakur, J. Polym. Sci. Part B Polym. Phys. 46, 2577 (2008).

    Article  CAS  Google Scholar 

  36. S. Raghu, K. Archana, C. Sharanappa, S. Ganesh, and H. Devendrappa, J. Rad. Res. Appl. Sci. 9, 117 (2016).

    CAS  Google Scholar 

  37. S. Chapi and H. Devendrappa, J. Res. Updates Polym. Sci. 3, 205 (2015).

    Article  CAS  Google Scholar 

  38. A.J. Müller and R.M. Michell, Differential Scanning Calorimetry of Polymers (Hoboken: Wiley, 2016), pp. 72–99.

    Google Scholar 

  39. M.A. Saadiah, D. Zhang, Y. Nagao, S.K. Muzakir, and A.S. Samsudin, J. Non-Cryst. Solids 511, 201 (2019).

    Article  CAS  Google Scholar 

  40. M. Madini, Curr. Appl. Phys. 11, 70 (2011).

    Article  Google Scholar 

  41. N.K. Abbas, M.A. Habeeb, and A.J.K. Algidsawi, Int. J. Polym. Sci. 2015, 1 (2015).

    Article  CAS  Google Scholar 

  42. K. Kiran Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, and V.V.R. Narasimha Rao, J. Non-Cryst. Solids 358, 3205 (2012).

    Article  CAS  Google Scholar 

  43. S. Ramesh, T.F. Yuen, and C.J. Shen, Spectrochim. Acta A 69, 670 (2008).

    Article  CAS  Google Scholar 

  44. M.F. Zaki, J. Phys. D Appl. Phys. 41, 175404 (2008).

    Article  CAS  Google Scholar 

  45. S.A.M. Noor, A. Ahmad, I.A. Talib, and M.Y.A. Rahman, Ionics 16, 161 (2010).

    Article  CAS  Google Scholar 

  46. J. Qiao, F. Jing, R. Lin, M. Jianxin, and L. Jianshe, Polymer 51, 4850 (2010).

    Article  CAS  Google Scholar 

  47. L. Wen-Ze, N. Yan-hua, Z. Chen-ting, L. Huan, and L. Guang-xian, Chin. J. Polym. Sci. 35, 1402 (2017).

    Article  CAS  Google Scholar 

  48. H. Nederstedt and P. Jannasch, Polymer 177, 231 (2019).

    Article  CAS  Google Scholar 

  49. K.M. Diederichsen, H.G. Buss, and B.D. McCloskey, Macromolecules 50, 3831 (2017).

    Article  CAS  Google Scholar 

  50. K. Boram, C. Chang-Geun, S. Yusuke, T. Isono, A. Min-Kyoon, M. Cheong-Min, H. Jin-Hyeok, C.F. Ramirez, T. Satoh, and L. Jae-Suk, Macromolecules 51, 2293 (2018).

    Article  CAS  Google Scholar 

  51. N. Reddeppa, K. Ramamohan, M. Ravi, and X. Guo, Solid State Ion. 278, 260 (2015).

    Article  CAS  Google Scholar 

  52. R. AnaMaria, A.C. de Alexander, and P.P. Robson, Polymer 51, 5151 (2010).

    Article  CAS  Google Scholar 

  53. W.T. Andrews, A. Liebig, J. Cook, P. Marsh, C. Ciocanel, G.E. Lindberg, and C.C. Browder, Solid State Ion. 326, 150 (2018).

    Article  CAS  Google Scholar 

  54. C. Venkata Subba Rao, M. Ravi, V. Raja, P.B. Bhargav, S. Ashok Kumar, and V.V.R. Narasimha Rao, Iran. Polym. J. 21, 531 (2012).

    Article  CAS  Google Scholar 

  55. L. Yang, L. Xianming, W. Wang, J. Cheng, Y. Hailong, C. Tang, K. Jang-Kyo, and L. Yongsong, Sci. Rep. 5, 16584 (2015).

    Article  CAS  Google Scholar 

  56. D.P. Dubal, V.J. Fulari, and C.D. Lokhande, Micropor. Mesopor. Mater. 151, 511 (2012).

    Article  CAS  Google Scholar 

  57. B.W. Zhao, S.J. Lu, X. Zhang, H. Wang, J.B. Liu, and H. Yan, Ionics 22, 261 (2016).

    Article  CAS  Google Scholar 

  58. G. Jiang, S. Maeda, Y. Saito, S. Tanase, and T. Sakai, J. Electrochem. Soc. 152, A767 (2005).

    Article  CAS  Google Scholar 

  59. Z. Wu, X.L. Huang, Z.L. Wang, J.J. Xu, H.G. Wang, and X.B. Zhang, Sci. Rep. 4, 3669 (2014).

    Article  CAS  Google Scholar 

  60. S. Chapi, J. Nano Electron. Phys. 12, 02043 (2020).

    Article  CAS  Google Scholar 

  61. F.C. Anson, Anal. Chem. 38, 54 (1966).

    Article  CAS  Google Scholar 

  62. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (New York: Wiley, 2001).

    Google Scholar 

  63. G.S. Gund, D.P. Dubal, N.R. Chodankar, J.Y. Cho, P. Gomez-Romero, C. Park, and C.D. Lokhande, Sci. Rep. 5, 12454 (2015).

    Article  Google Scholar 

  64. M. Abdelaziz, Phys. B 406, 13001307 (2011).

    Article  CAS  Google Scholar 

  65. S. Ibrahim and M.R. Johan, Int. J. Electrochem. Sci. 7, 2596 (2012).

    CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Muttanagoud Kalasad, Professor & Chairman, Department of Physics, Davangere University, Davanger; Principal Prof. P. G. Patil, Dr. Ramesh G. K., Dr. Kumar H. K., Miss. Ashwini Rayar, KLE Society’s J T College Gadag; Dr. Gangadhar Babaladimath, KLE Society’s RLS College, Belagavi; and Kabiru Bello, Umaru Ali Shinkafi Polytechnic, Sokoto State, Nigeria, for support and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanappa Chapi.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapi, S. Influence of Co2+ on the Structure, Conductivity, and Electrochemical Stability of Poly(Ethylene Oxide)-Based Solid Polymer Electrolytes: Energy Storage Devices. J. Electron. Mater. 50, 1558–1571 (2021). https://doi.org/10.1007/s11664-020-08706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08706-6

Keywords

Navigation