Skip to main content

Advertisement

Log in

Construction of Nitrogen-Doped Carbon Nanosheets for Efficient and Stable Oxygen Reduction Electrocatalysis

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Two-dimensional nitrogen-doped carbon nanosheets (GCNS) have been fabricated through polymerization and carbonization using resorcinol, formaldehyde, aniline and graphene oxide as reactants. Herein, aniline serves as a nitrogen source for doping and graphene oxide is employed as the structure directing agent for nanosheet generation to engineer the structure. The resultant GCNS display a high surface area of 351 m2 g−1 and N doping content of 1.06 wt.%. Moreover, the obtained electrocatalysts demonstrate superior electrocatalytic oxygen reduction characteristics with an onset potential of 0.920 V versus reversible hydrogen electrode, diffusion-limiting current density (− 4.24 mA cm−2) and improved stability in an alkaline medium. The optimized oxygen reduction performance can be attributed to the rapid mass transfer and abundant active sites owing to the synergistic coupling effects arising from heteroatom dopants and structure modulation. On one hand, heteroatom doping provides enhance electronic conductivity with abundant defects and effective charge diffusion with improved surface wettability, which favors the electrocatalytic performances. On the other hand, the unique two-dimensional structure of the resultant GCNS provides good electrolyte accessibility and short ion/electron diffusion distances. This work demonstrates an effective construction of targeted heteroatom doping carbon nanosheets with surface functionalities and structure modification as carbon-based catalysts with advanced electrocatalytic performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Xiong, Y. Yang, F.J. Disalvo, and H.D. Abruna, J. Am. Chem. Soc. 141, 10744 (2019).

    Article  CAS  Google Scholar 

  2. M. Wang, Y. Li, J. Fang, C.J. Villa, Y. Xu, S. Hao, J. Li, Y. Liu, C.M. Wolverton, X. Chen, V.P. Dravid, and Y. Lai, Adv. Energy Mater. 10, 1902736 (2020).

    Article  CAS  Google Scholar 

  3. L. Jiang, J. Duan, J. Zhu, S. Chen, and M. Antonietti, ACS Nano 14, 2436 (2020).

    Article  CAS  Google Scholar 

  4. X. Tian, X. Zhao, Y.Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E.J.M. Hensen, X.W. Lou, and B.Y. Xia, Science 366, 850 (2019).

    Article  CAS  Google Scholar 

  5. J.H. Kim, D. Shin, J. Lee, D.S. Baek, T.J. Shin, Y.T. Kim, H.Y. Jeong, J.H. Kwak, H. Kim, and S.H. Joo, ACS Nano 14, 1990 (2020).

    Article  CAS  Google Scholar 

  6. G. Qi, X. Liu, C. Li, C. Wang, and Z. Yuan, Angew. Chem. 58, 17406 (2019).

    Article  CAS  Google Scholar 

  7. Q.X. Chen, Y.H. Liu, X.Z. Qi, J.W. Liu, H.J. Jiang, J.L. Wang, Z. He, X.F. Ren, Z.H. Hou, and S.H. Yu, J. Am. Chem. Soc. 141, 10729 (2019).

    Article  CAS  Google Scholar 

  8. S. Chen, M. Li, M. Gao, J. Jin, M.A. van Spronsen, M.B. Salmeron, and P. Yang, Nano Lett. 20, 1974 (2020).

    Article  CAS  Google Scholar 

  9. J. Zhang, Y. Zhao, C. Chen, Y.C. Huang, C.L. Dong, C.J. Chen, R.S. Liu, C. Wang, K. Yan, Y. Li, and G. Wang, J. Am. Chem. Soc. 141, 20118 (2019).

    Article  CAS  Google Scholar 

  10. F. Meng, Z. Wang, H. Zhong, J. Wang, J. Yan, and X. Zhang, Adv. Mater. 28, 7948 (2016).

    Article  CAS  Google Scholar 

  11. R.A. Mirzaie, A.A. Firooz, and K. Mohammadkhani, J. Electron. Mater. 47, 6995 (2018).

    Article  CAS  Google Scholar 

  12. J. Xie, B. Li, H. Peng, Y. Song, J. Li, Z. Zhang, and Q. Zhang, Angew. Chem. 131, 4963 (2019).

    Article  CAS  Google Scholar 

  13. W. Xia, J. Tang, J. Li, S. Zhang, K.C. Wu, J. He, and Y. Yamauchi, Angew. Chem. 58, 13354 (2019).

    Article  CAS  Google Scholar 

  14. L. Wang, Z. Zeng, W. Gao, T. Maxson, D. Raciti, M. Giroux, X. Pan, C. Wang, and J. Greeley, Science 363, 870 (2019).

    Article  CAS  Google Scholar 

  15. H.B. Tao, J. Zhang, J. Chen, L. Zhang, Y. Xu, J.G. Chen, and B. Liu, J. Am. Chem. Soc. 141, 13803 (2019).

    Article  CAS  Google Scholar 

  16. J. Gao, Y. Wang, H. Wu, X. Liu, L. Wang, Q. Yu, A. Li, H. Wang, C. Song, Z. Gao, M. Peng, M. Zhang, N. Ma, J. Wang, W. Zhou, G. Wang, Z. Yin, and D. Ma, Angew. Chem. 58, 15089 (2019).

    Article  CAS  Google Scholar 

  17. X. Han, X. Ling, D. Yu, D. Xie, L. Li, S. Peng, C. Zhong, N. Zhao, Y. Deng, and W. Hu, Adv. Mater. 31, 1905622 (2019).

    Article  CAS  Google Scholar 

  18. J. Wei, Y. Hu, Y. Liang, B. Kong, J. Zhang, J. Song, Q. Bao, G.P. Simon, S.P. Jiang, and H. Wang, Adv. Funct. Mater. 25, 5768 (2015).

    Article  CAS  Google Scholar 

  19. H. Tan, J. Tang, J. Henzie, Y. Li, X. Xu, T. Chen, Z. Wang, J. Wang, Y. Ide, Y. Bando, and Y. Yamauchi, ACS Nano 12, 5674 (2018).

    Article  CAS  Google Scholar 

  20. Z. Wu and X. Zhang, Acta Phys. Chim. Sin. 33, 305 (2017).

    Article  CAS  Google Scholar 

  21. H. Fei and X. Duan, Acta Phys. Chim. Sin. 35, 559 (2019).

    Article  Google Scholar 

  22. H. Yu, L. Shang, T. Bian, R. Shi, G.I.N. Waterhouse, Y. Zhao, C. Zhou, L.Z. Wu, C.H. Tung, and T. Zhang, Adv. Mater. 28, 5080 (2016).

    Article  CAS  Google Scholar 

  23. L. Li, P. Dai, X. Gu, Y. Wang, L. Yan, and X. Zhao, J. Mater. Chem. 5, 789 (2017).

    Article  CAS  Google Scholar 

  24. N. Wang, B. Lu, L. Li, W. Niu, Z. Tang, X. Kang, and S. Chen, ACS Catal. 8, 6827 (2018).

    Article  CAS  Google Scholar 

  25. D. Xia, X. Yang, L. Xie, Y. Wei, W. Jiang, M. Dou, X. Li, J. Li, L. Gan, and F. Kang, Adv. Funct. Mater. 29, 1906174 (2019).

    Article  CAS  Google Scholar 

  26. F. Jing, M. Chen, Y. Tang, Z. Xu, T. Huang, Y. Su, and D. Wu, J. Colloid Interface Sci. 492, 8 (2017).

    Article  CAS  Google Scholar 

  27. D. Wu, M. Cao, H. You, C. Zhao, and R. Cao, Chem. Commun. 55, 13832 (2019).

    Article  CAS  Google Scholar 

  28. W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng, and K. Mullen, Angew. Chem. 126, 1596 (2014).

    Article  Google Scholar 

  29. Q. Jin, W. Li, K. Wang, H. Li, P. Feng, Z. Zhang, W. Wang, and K. Jiang, Adv. Funct. Mater. 30, 1909907 (2020).

    Article  CAS  Google Scholar 

  30. K. Qu, Y. Zheng, S. Dai, and S.Z. Qiao, Nano Energy 19, 373 (2016).

    Article  CAS  Google Scholar 

  31. M. Zhou, H.L. Wang, and S. Guo, Chem. Soc. Rev. 45, 1273 (2016).

    Article  CAS  Google Scholar 

  32. W. Zhang, S. Sun, L. Yang, C. Lu, Y. He, C. Zhang, M. Cai, Y. Yao, F. Zhang, and X. Zhuang, J. Colloid Interface Sci. 516, 9 (2018).

    Article  CAS  Google Scholar 

  33. S. Liu and X. Pan, J. Electron. Mater. 48, 7404 (2019).

    Article  CAS  Google Scholar 

  34. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, and V. Pellegrini, Science 347, 1246501 (2015).

    Article  CAS  Google Scholar 

  35. M.S. Kim, S. Cho, S.H. Joo, J. Lee, S.K. Kwak, M.I. Kim, and J. Lee, ACS Nano 13, 4312 (2019).

    Article  CAS  Google Scholar 

  36. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).

    Article  CAS  Google Scholar 

  37. L. Wang, S. Dou, J. Xu, H. Liu, S. Wang, J. Ma, and S.X. Dou, Chem. Commun. 51, 11791 (2015).

    Article  CAS  Google Scholar 

  38. Z. Sun, Y. Wang, L. Zhang, H. Wu, Y. Jin, Y. Li, Y. Shi, T. Zhu, H. Mao, J. Liu, C. Xiao, and S. Ding, Adv. Funct. Mater. 30, 1910482 (2020).

    Article  CAS  Google Scholar 

  39. R. Li, Z. Wei, and X. Gou, ACS Catal. 5, 4133 (2015).

    Article  CAS  Google Scholar 

  40. W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  41. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, ACS Nano 4, 4806 (2010).

    Article  CAS  Google Scholar 

  42. M.J. Tham, R.D. Walker, and K.E. Gubbins, J. Phys. Chem. 74, 1747 (1970).

    Article  CAS  Google Scholar 

  43. R.E. Davis, G.L. Horvath, and C.W. Tobias, Electrochim. Acta 12, 287 (1967).

    Article  CAS  Google Scholar 

  44. Z. Wu and X. Zhang, Sci. China Mater. 59, 547 (2016).

    Article  CAS  Google Scholar 

  45. G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. Zhang, H.L. Wang, and L. Dai, Nano Energy 29, 83 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Doctoral Scientific Research Start-Up Foundation of Bengbu University (Grant No. BBXY2018KYQD16), Anhui Department of Education University Natural Science Research Project of Anhui Province (Grant No. KJ2019A0848, Grant No. KJ2019A0851 and Grant No. KJ2019ZD62) and Education Department of Jilin Province (JJKH20190584KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Wu or Dan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhang, X., Xu, D. et al. Construction of Nitrogen-Doped Carbon Nanosheets for Efficient and Stable Oxygen Reduction Electrocatalysis. J. Electron. Mater. 50, 1349–1357 (2021). https://doi.org/10.1007/s11664-020-08660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08660-3

Keywords

Navigation