Skip to main content
Log in

Assessment of Deoxyribonuclease Activity Using DNA Molecules Immobilized Between Microelectrodes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Serum deoxyribonuclease I (DNase I) can serve as a functional biomarker for the therapeutic monitoring of acute myocardial infarction and other diseases. Here, we demonstrate that the electrical properties of DNA molecules can be exploited to monitor enzymatic activity. A label-free DNA biosensor for the detection of DNase I activity was devised based on electrochemical impedance spectroscopy (EIS). Multiple lambda phage DNA molecules were immobilized between two electrodes in a polydimethylsiloxane reservoir. An equivalent circuit estimated from the EIS measurement was used to calculate the impedance of DNA molecules between the electrodes. DNase detection was then achieved by measuring the increase in impedance, after DNA cleavage by DNase I. This was assessed by the impedance-increase ratio, defined as Rafter/Rbefore (where Rbefore and Rafter represent the resistance between the electrode-immobilized DNA molecules before and after DNase I treatment, respectively). After treatment with DNase I at a concentration 10−2 unit/μL, a reproducible impedance-increase ratio of approximately 3.3 times was obtained, with a standard deviation of less than 20%. When DNase solutions of various concentrations were introduced, we succeeded in obtaining a definite correlation between DNase concentration and impedance-increase rate, within the range of 10−4 unit/μL to 10−1 unit/μL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D. Basso, C. Fabris, A. Meani, G.D. Favero, A. Panucci, D. Vianello, A. Piccoli, and R. Naccarato, Tumori 71, 529 (1985).

    Article  CAS  Google Scholar 

  2. A.G. Baranovskii, V.N. Buneva, and G.A. Nevinsky, Biochemistry (Moscow) 69, 587 (2004).

    Article  CAS  Google Scholar 

  3. S.N. Tamkovich, A.V. Cherepanova, E.V. Kolesnikova, E.Y. Rykova, D.V. Pyshnyi, V.V. Vlassov, and P.P. Laktionov, Ann. N. Y. Acad. Sci. 1075, 191 (2006).

    Article  CAS  Google Scholar 

  4. N. Morikawa, Y. Kawai, K. Arakawa, T. Kumamoto, I. Miyamori, H. Akao, M. Kitayama, K. Kajinami, J.-D. Lee, H. Takeshita, Y. Kominato, and T. Yasuda, Eur. Heart J. 28, 2992 (2007).

    Article  CAS  Google Scholar 

  5. A. Economidou-Karauglou, M. Lans, H.S. Taper, J.L. Michaux, and M.B. Roberfroid, Cancer 61, 1838 (1988).

    Article  Google Scholar 

  6. D.A. Spandidos, G. Ramandanis, J. Garas, and S.D. Kottaridis, Eur. J. Cancer 16, 1615 (1980).

    Article  CAS  Google Scholar 

  7. C. Scully, D.A. Spandidos, P.W. Booth, I.A. McGregor, and P. Boyle, Biomedicine 35, 179 (1981).

    CAS  Google Scholar 

  8. A.V. Cherepanova, S.N. Tamkovich, O.E. Bryzgunova, V.V. Vlassov, and P.P. Laktionova, Ann. N. Y. Acad. Sci. 1137, 218 (2008).

    Article  CAS  Google Scholar 

  9. M. Macanovic and P.J. Lachmann, Clin. Exp. Immunol. 108, 220 (1997).

    Article  CAS  Google Scholar 

  10. K. Yasutomo, T. Horiuchi, S. Kagami, H. Tsukamoto, C. Hashimura, M. Urushihara, and Y. Kuroda, Nat. Genet. 28, 313 (2001).

    Article  CAS  Google Scholar 

  11. K. Kishi, T. Yasuda, and H. Takeshita, Leg. Med. 3, 69 (2001).

    Article  CAS  Google Scholar 

  12. H. Takeshita, T. Nakajima, K. Mogi, Y. Kaneko, T. Yasuda, R. Iida, and K. Kishi, Clin. Chem. 50, 446 (2004).

    Article  CAS  Google Scholar 

  13. S.J. Choi and F.C. Szoka, Anal. Biochem. 281, 95 (2000).

    Article  CAS  Google Scholar 

  14. Y. Liu, S. Wang, C. Zhang, X. Su, S. Huang, and M. Zhao, Anal. Chem. 85, 4853 (2013).

    Article  CAS  Google Scholar 

  15. X. Su, C. Zhang, X. Zhu, S. Fang, R. Weng, X. Xiao, and M. Zhao, Anal. Chem. 85, 9939 (2013).

    Article  CAS  Google Scholar 

  16. A. Cherepanova, S. Tamkovich, D. Pyshnyi, M. Kharkova, V. Vlassov, and P. Laktionov, J. Immunol. Methods 325, 96 (2007).

    Article  CAS  Google Scholar 

  17. D. Nadano, T. Yasuda, and K. Kishi, Clin. Chem. 39, 448 (1993).

    Article  CAS  Google Scholar 

  18. Y. Dou and X. Yang, Anal. Chim. Acta 784, 53 (2013).

    Article  CAS  Google Scholar 

  19. N.M. Robertson, M.S. Hizir, M. Balcioglu, M. Rana, H. Yumak, O. Ecevit, and M.V. Yigit, Bioconjugate Chem. 26, 735 (2015).

    Article  CAS  Google Scholar 

  20. S. Sato, K. Fujita, M. Kanazawa, K. Mukumoto, K. Ohtsuka, and S. Takenaka, Anal. Chim. Acta 645, 30 (2009).

    Article  CAS  Google Scholar 

  21. Chen Li, Xuejuan Chen, Nan Wangac, and Bailin Zhang, RSC Adv. 7, 21666 (2017).

    Article  CAS  Google Scholar 

  22. T. Heim, D. Deresmes, and D. Vuillaume, J. Appl. Phys. 96, 2927 (2004).

    Article  CAS  Google Scholar 

  23. C. Yamahata, D. Collard, T. Takekawa, M. Kumemura, G. Hashiguchi, and H. Fujita, Biophys. J . 94, 63 (2008).

    Article  CAS  Google Scholar 

  24. T. Himuro, R. Araki, S. Sato, S. Takenaka, and T. Yasuda, IEEJ. Trans. Sens. Micromach. 136, 425 (2016).

    Article  Google Scholar 

  25. T. Himuro, S. Sato, S. Takenaka, and T. Yasuda, Electroanalysis 28, 1448 (2016).

    Article  CAS  Google Scholar 

  26. T. Himuro, S. Tsukamoto, and Y. Saito, J. Electron. Mater. 48, 1562 (2019).

    Article  CAS  Google Scholar 

  27. Z. Kutnjak, C. Filipic, R. Podgornik, L. Nordenskiöld, and N. Korolev, Phys. Rev. Lett. 90, 098101-1 (2003).

    Article  Google Scholar 

  28. M. Kumemura, D. Collard, C. Yamahata, N. Sakaki, G. Hashiguchi, and H. Fujita, ChemPhysChem 8, 1875 (2007).

    Article  CAS  Google Scholar 

  29. M. Ueda, H. Iwasaki, O. Kurosawa, and M. Washizu, Jpn. J. Appl. Phys. 38, 2118 (1999).

    Article  CAS  Google Scholar 

  30. J.T.S. Irvine, D.C. Sinclair, and A.R. West, Adv. Mater. 2, 132 (1990).

    Article  CAS  Google Scholar 

  31. I.I. Suni, Trends Anal. Chem. 27, 604 (2008).

    Article  CAS  Google Scholar 

  32. A. Sadkowski, J. Electroanal. Chem. 481, 222 (2000).

    Article  CAS  Google Scholar 

  33. A. Sadkowski, J. Electroanal. Chem. 481, 232 (2000).

    Article  CAS  Google Scholar 

  34. F. Berthier, J.-P. Diard, and R. Michel, J. Electroanal. Chem. 510, 1 (2001).

    Article  CAS  Google Scholar 

  35. S. Sato, K. Fujita, M. Kanazawa, K. Mukumoto, K. Ohtsuka, M. Waki, and S. Takenaka, Anal. Biochem. 381, 233 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for Young Scientists (Grant No.: JP18K13769) and a Grant-in-Aid for Challenging Exploratory Research (Grant No.: JP16K14281) from JSPS. The authors gratefully thank Dr. Masanori Eguchi of the National Institute of Technology, Kure College, for his help with electron-beam lithography exposure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Himuro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himuro, T., Saito, Y. Assessment of Deoxyribonuclease Activity Using DNA Molecules Immobilized Between Microelectrodes. J. Electron. Mater. 50, 537–542 (2021). https://doi.org/10.1007/s11664-020-08596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08596-8

Keywords

Navigation