Skip to main content
Log in

Conductive and Transparent Properties of ZnO/Cu/ZnO Sandwich Structure

  • TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The conductive and transparent properties of ZnO/Cu/ZnO sandwich structures were investigated in this study. The IV curves of single ZnO films with different thicknesses were recorded and plotted. The linear IV curves confirmed the ohmic conduction mechanism for the ZnO thin films in the ZnO/Cu/ZnO sandwich structures. Moreover, the energy band diagram of the ZnO/Cu interface showed that the interface between ZnO and Cu exhibited ohmic contact behavior. The resistivity of the ZnO/Cu/ZnO sandwich structures (with thicknesses between 20/5/20 nm and 80/5/80 nm) ranged from 2.25 × 10−4 Ω cm to 9.72 × 10−4 Ω cm. The lowest resistivity (i.e., 2.25 × 10−4 Ω cm) occurred in the 20/5/20 nm thin film. In the ZnO/Cu/ZnO sandwich structures, the electrons are transported vertically through the upper ZnO thin film and transported horizontally in the sandwiched Cu thin film. Ohmic conduction behavior was verified throughout the conduction path in the ZnO/Cu/ZnO sandwich structure. The transmittance measurement in the visible region of the structures showed that the sandwiched ZnO layers increased the transmittance of the 5 nm Cu thin film. In addition, the transmittance of the ZnO/Cu/ZnO sandwich structure was dependent on the thickness of the sandwiched ZnO layers. The 60/5/60 nm sandwich structure exhibited the best enhancement effect on transmittance. The thickness dependence was found to be due to the destructive interference between the reflected light at the ZnO/Cu and Cu/ZnO interfaces in the ZnO/Cu/ZnO sandwich structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tamayo-Arriola, A. Huerta-Barbera, M. Montes Bajo, E. Munoz, V. Munoz-Sanjose, and A. Hierro, Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5048771.

    Article  Google Scholar 

  2. J. Ephraim, D. Lanigan, C. Staller, D.J. Milliron, and E. Thimsen, Chem. Mater. (2016). https://doi.org/10.1021/acs.chemmater.6b02414.

    Article  Google Scholar 

  3. H. Hajibabaei, O. Zandi, and T.W. Hamann, Chem. Sci. (2016). https://doi.org/10.1039/c6sc02116f.

    Article  Google Scholar 

  4. A. Zeumault and V. Subramanian, Adv. Funct. Mater. (2016). https://doi.org/10.1002/adfm.201503940.

    Article  Google Scholar 

  5. Y.R. Lu, Y.S. Xie, and Y.S. Zhang, Optolink (2012). https://doi.org/10.29664/Optolink.201203.0013.

    Article  Google Scholar 

  6. K.H. Choi, H.J. Nam, J.A. Jeong, S.W. Cho, H.K. Kim, J.W. Kang, D.G. Kim, and W.J. Cho, Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2937845.

    Article  Google Scholar 

  7. Y.S. Park, K.H. Choi, and H.K. Kim, J. Phys. D Appl. Phys. (2009). https://doi.org/10.1088/0022-3727/42/23/235109.

    Article  Google Scholar 

  8. C.C. Chueh, C.I. Chen, Y.A. Su, H. Konnerth, Y.J. Gu, C.W. Kung, and K.C.W. Wu, J. Mater. Chem. A (2019). https://doi.org/10.1039/C9TA03595H.

    Article  Google Scholar 

  9. C.C. Lee, C.I. Chen, Y.T. Liao, K.C.W. Wu, and C.C. Chueh, Adv. Sci. (2019). https://doi.org/10.1002/advs.201801715.

    Article  Google Scholar 

  10. Y.T. Liao, N.V. Chi, N. Ishiguro, A.P. Young, C.K. Tsung, and K.C.W. Wu, Appl. Catal. B (2020). https://doi.org/10.1016/j.apcatb.2020.118805.

    Article  Google Scholar 

  11. H. Konnerth, B.M. Matsagar, S.S. Chen, M.H.G. Prechtl, F.K. Shieh, and K.C.W. Wu, Coord. Chem. Rev. (2020). https://doi.org/10.1016/j.ccr.2020.213319.

    Article  Google Scholar 

  12. Y.T. Liao, B.M. Matsagar, and K.C.W. Wu, ACS Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.8b03683.

    Article  Google Scholar 

  13. D.R. Sahu and J.L. Huang, Appl. Surf. Sci. (2006). https://doi.org/10.1016/j.apsusc.2006.01.023.

    Article  Google Scholar 

  14. D.R. Sahu and J.L. Huang, Appl. Surf. Sci. (2006). https://doi.org/10.1016/j.apsusc.2006.01.035.

    Article  Google Scholar 

  15. D.R. Sahu, S.Y. Lin, and J.L. Huang, Microelectron. J. (2007). https://doi.org/10.1016/j.mejo.2006.11.005.

    Article  Google Scholar 

  16. D.R. Sahu and J.L. Huang, Thin Solid Films 516, 208 (2007). https://doi.org/10.1016/j.tsf.2007.06.124.

    Article  CAS  Google Scholar 

  17. D.R. Sahu and J.L. Huang, Microelectron. J. (2007). https://doi.org/10.1016/j.mejo.2007.01.012.

    Article  Google Scholar 

  18. K. Sivaramakrishnan, N.D. Theodore, J.F. Moulder, and T.L. Alford, J. Appl. Phys. (2009). https://doi.org/10.1063/1.3213385.

    Article  Google Scholar 

  19. H.C. Lee and O.O. Park, Vacuum (2004). https://doi.org/10.1016/j.vacuum.2004.03.008.

    Article  Google Scholar 

  20. M.D. McCluskey and S.J. Jokela, J. Appl. Phys. (2009). https://doi.org/10.1063/1.3216464.

    Article  Google Scholar 

  21. I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, J. Phys. Condens. Matter (2015). https://doi.org/10.1088/0953-8984/27/22/223201.

    Article  Google Scholar 

  22. C. Guillen and J. Herrero, Thin Solid Films (2011). https://doi.org/10.1016/j.tsf.2011.06.091.

    Article  Google Scholar 

  23. T. Zhou and D. Gall, Phys. Rev. B (2018). https://doi.org/10.1103/PhysRevB.97.165406.

    Article  Google Scholar 

  24. F.C. Chiu, Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/578168.

    Article  Google Scholar 

  25. C.C. Lee, Thin Film Optics and Coating Technology, 8th ed. (Taipei: Yi Hsien, 2016), pp. 41–45.

    Google Scholar 

  26. K.M. McPeak, S.V. Jayanti, S.J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D.J. Norris, ACS Photonics 2, 326 (2015). https://doi.org/10.1021/ph5004237.

    Article  CAS  Google Scholar 

  27. M.F. Al-Kuhaili, I.O. Alade, and S.M.A. Durrani, Opt. Mater. Express (2014). https://doi.org/10.1364/OME.4.002323.

    Article  Google Scholar 

  28. H.K. Raut, V.A. Ganesh, A.S. Nair, and S. Ramakrishna, Energy Environ. Sci. (2011). https://doi.org/10.1039/c1ee01297e.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Programs MOST107-2221-E-008-042-MY3 and MOST108-2221-E-008-045-MY3. Financial support and information consultancy regarding high and flexible material development trends provided by Zhen Ding Technology Holding Limited is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Yi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WH., Chou, CY., Li, BJ. et al. Conductive and Transparent Properties of ZnO/Cu/ZnO Sandwich Structure. J. Electron. Mater. 50, 779–785 (2021). https://doi.org/10.1007/s11664-020-08471-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08471-6

Keywords

Navigation