Skip to main content
Log in

Theoretical Investigation of BGaAs/GaAs for Optoelectronic Device Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Boron dopant incorporation into host GaAs material to form a novel BGaAs semiconductor has been studied using a 10-band kp model. This model allows us to calculate the electronic band structure along the crystallographic direction. So, from the obtained Ek relation, we calculate the carrier effective mass, intrinsic carrier concentration, and x = 0 (GaAs) are in good agreement with previously reported literature. The intrinsic carrier concentration variation is seen as monotonic with boron composition. On the other hand, the composition-dependent Debye temperature observed reduction along with symmetry directions, Λ by 1.23/%B, Σ by − 2.33/%B, and Δ by − 3.52/%B, which leads to the lower stability of crystalline BGaAs alloy. In addition, the interband absorption coefficient as a function of photon energy shows nonmonotonic dependence with fundamental absorption observed at 1.39 eV. Whereas, in the case of quantum well, the optical gain spectrum peak is blueshifted with the density of injected carriers. Hence, this study provides beneficial guidance in the interpretation of applications such as solar cells, optical modulators, multiple QWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.H. Zhang and W. Shi, Appl. Phys. Lett. 73, 1095–1097 (1998).

    Article  CAS  Google Scholar 

  2. D.H. Zhang, X.Z. Wang, H.Q. Zheng, W. Shi, S.F. Yoon, and C.H. Kam, J. Vac. Sci. Technol., B 18, 2274–2278 (2000).

    Article  CAS  Google Scholar 

  3. T. Hidouri, S. Nasr, and F. Saidi, Optik 205, 164253 (2020).

    Article  CAS  Google Scholar 

  4. T. Hidouri, M. Biswas, I. Mal, S. Nasr, S. Chakrabarti, D.P. Samajdar, and F. Saidi, Sol. Energy 199, 183 (2020).

    Article  CAS  Google Scholar 

  5. G. Leibiger, V. Gottschalch, V. Riede, M. Schubert, J.N. Hilfiker, and T.E. Tiwald, J. Phys. Rev. B. 67, 195205 (2003).

    Article  Google Scholar 

  6. K.M. Yu, S.V. Novikov, R. Broesler, A.X. Levander, Z. Liliental-Weber, F. Luckert, R.W. Martin, O. Dubon, J. Wu, W. Walukiewicz, and C.T. Foxon, Phys. Status Solidi Curr. Top. Solid State Phys. 8, 2503 (2011).

    CAS  Google Scholar 

  7. M. Weyers, M. Sato, and H. Ando, Jpn. J. Appl. Phys. 31, L853 (1992).

    Article  CAS  Google Scholar 

  8. K. Uesugi, N. Morooka, and I. Suemune, Appl. Phys. Lett. 74, 1254 (1999).

    Article  CAS  Google Scholar 

  9. R. Kuroiwa, H. Asahi, K. Asami, S.-J. Kim, K. Iwata, and S. Gonda, Appl. Phys. Lett. 73, 2630 (1998).

    Article  CAS  Google Scholar 

  10. G.L.W. Hart and A. Zunger, Phys. Rev. B. 62, 13522 (2000).

    Article  CAS  Google Scholar 

  11. D.J. Stukel, Phys. Rev. B 1, 3458 (1970).

    Article  Google Scholar 

  12. A. Lindsay and E.P. O’Reilly, Phys. Rev. B 76, 075210 (2007).

    Article  Google Scholar 

  13. I. Gulyas, R. Kudrawiec, and M.A. Wistey, J. Appl. Phys. 126, 095703 (2019).

    Article  Google Scholar 

  14. V.K. Gupta, M.W. Koch, N.J. Watkins, Y. Gao, and G.W. Wicks, J. Electron. Mater. 29, 1387 (2000).

    Article  CAS  Google Scholar 

  15. W.E. Hoke, P.J. Lemonias, D.G. Weir, and H.T. Hendriks, J. Vac. Sci. Technol., B 11, 902 (1993).

    Article  CAS  Google Scholar 

  16. J.F. Geisz, D.J. Freidman, J.M. Sarah Olson, R. Kurtz, R.C. Reedy, A.B. Swaetzlander, B.M. Keyes, and A.G. Norman, J. Appl. Phys. Lett. 76, 1443 (2000).

    Article  CAS  Google Scholar 

  17. Z. Jia, Q. Wang, X. Ren, Y. Wang, S. Cai, X. Zhang, and Y. Huang, J. Cryst. Growth 394, 74 (2014).

    Article  CAS  Google Scholar 

  18. H. Detza, D. Mac Farland, T. Zederbauer, S. Lancaster, A.M. Andrews, W. Schrenk, and G. Strasser, J. Cryst. Growth 477, 77–81 (2017).

    Article  Google Scholar 

  19. A. Sharma and T.D. Das, Bull. Mater. Sci. 42, 87 (2019).

    Article  Google Scholar 

  20. M.A. Green, J. Appl. Phys. 67, 2944 (1990).

    Article  CAS  Google Scholar 

  21. A. Bedjaoui, A. Bouhemadou, S. Aloumi, R. Khenata, S. Bin-Omran, Y. Al-Douri, F. Saad Saoud, and S. Bensalem, Solid State Sci. 70, 21 (2017).

    Article  CAS  Google Scholar 

  22. P. Perlin, P. Wisniewski, C. Skierbiszewski, T. Suski, E. Kaminska, S.G. Subramanya, E.R. Weber, D.E. Mars, and W. Walukiewizc, Appl. Phys. Lett. 76, 1279 (2000).

    Article  CAS  Google Scholar 

  23. A. Sharma and T.D. Das, Mater. Sci. Semicond. Process. 109, 104947 (2020).

    Article  CAS  Google Scholar 

  24. O. Nemiri, S. Ghemid, Z. Chouahda, H. Meradji, and F. EL Haj Hassan, Int. J. Mod. Phys. B 27, 1350166 (2013).

    Article  Google Scholar 

  25. I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  CAS  Google Scholar 

  26. K. Bushick, K. Mengle, N. Sanders, and E. Kioupakis, Appl. Phys. Lett. 114, 022101 (2019).

    Article  Google Scholar 

  27. N. Chimot, J. Even, H. Folliot, and S. Loualiche, Phys. B 364, 263 (2005).

    Article  CAS  Google Scholar 

  28. G.L.W. Hart et al., BAs-GaAs semiconductor alloys as a photovoltaic alternative to nitride alloys, in Conference proceeding (2000)

  29. M.M. Habchi, A.B. Nasr, A. Rebey, and B. El Jani, Infrared Phys. Technol. 67, 531 (2014).

    Article  CAS  Google Scholar 

  30. S.L. Chuang, Physics of Optoelectronic Devices (Pure and Applied Optics) (New York: Wiley, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A. Theoretical Investigation of BGaAs/GaAs for Optoelectronic Device Applications. J. Electron. Mater. 49, 6263–6269 (2020). https://doi.org/10.1007/s11664-020-08389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08389-z

Keywords

Navigation