Skip to main content
Log in

Structural, Spectral, and Optical Characterization of Potassium bis(2-methyllactato)borate Hemihydrate Crystal

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Potassium bis(2-methyllactato)borate hemihydrate (KMB) was grown by a solvent evaporation technique. Crystal structural analysis revealed that the potassium cation was pseudo-octahedrally coordinated by five O atoms from four bis(2-methyllactato)borate (MB) ligands and half-occupied water. The sharp peaks in the powder x-ray diffraction (PXRD) pattern confirmed the perfect crystalline nature of the KMB. Transparency was observed in the range from 215 nm to 1100 nm, and the bandgap of KMB was determined to be 2.15 eV. The molecular structure of KMB was established by interpreting the functional group vibrations through vibrational spectroscopy. The molecular structure was further confirmed by the nuclear magnetic resonance (NMR) spectral technique. The peak followed by valley nature observed is due to the self-focusing behavior of KMB. The minimum transmission near the focus in the open aperture curve is attributed to the reverse saturation absorption nature of KMB. The third-order susceptibility (χ(3)) of KMB is estimated to be 4.17694 × 10−5 esu. These results suggest that KMB can be used in optical sensors as well as other photonic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Huang, Z. Hao, H. Gong, Z. Liu, S. Xiao, S. Li, Y. Zhai, S. You, Q. Wang, and J. Qin, Chem. Phys. Lett. 2, 213 (2008).

    Google Scholar 

  2. C. Zhang, Y.L. Song, and X. Wang, Coord. Chem. Rev. 251, 111 (2007).

    CAS  Google Scholar 

  3. P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effect in Molecules and Polymers (New York: Wiley, 1991).

    Google Scholar 

  4. M. Spasenovi, M. Betz, L. Costa, and H.M. Van Driel, Phys. Rev. B: Condens. Matter Mater. Phys. 77, 085201 (2008).

    Google Scholar 

  5. D.S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (London: Academic, 1987).

    Google Scholar 

  6. L. Cao, B. Teng, D. Zhong, L. Hao, and Q. Sun, J. Cryst. Growth 451, 188 (2016).

    CAS  Google Scholar 

  7. T. Wilson, G. Brigitte, C.C. Joseph, and H.S. Sylvia, Chem. Phys. Lett. 154, 93 (1989).

    Google Scholar 

  8. C. Chen, B. Wu, A. Jiang, and G. You, Sci. Sin. Ser. B (Engl. Ed.) 28, 235 (1985).

    Google Scholar 

  9. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, J. Opt. Soc. Am. B 6, 616 (1989).

    CAS  Google Scholar 

  10. C. Chen, G. Wang, X. Wang, and Z. Xu, Appl. Phys. B: Lasers Opt. 97, 9 (2009).

    CAS  Google Scholar 

  11. R. Aarthi and C. Ramachandra Raja, J. Mater. Sci. Mater Electron. 30, 8698 (2019).

    CAS  Google Scholar 

  12. R. Aarthi and C. Ramachandra Raja, Bull. Mater. Sci. 42, 209, 1 (2019).

    Google Scholar 

  13. R. Kefi, M. Zeller, F. Lefebvre, and C. Ben Nasr, Int. J. Inorg. Chem. 21, 1 (2011).

    Google Scholar 

  14. S.M. Saadeh, M.S. Lah, and V.L. Pecoraro, Inorg. Chem. 30, 8 (1991).

    CAS  Google Scholar 

  15. G. Cammas, M. Morssli, E. Fabregue, and L. Bardet, J. Raman Spectrosc. 22, 408 (1991).

    Google Scholar 

  16. R. Carballo, B. Covelo, E. Garcia-Martinez, E.M. VazLopez, A. Castineiras, and J. Niclos, Polyhedron 22, 1051 (2003).

    CAS  Google Scholar 

  17. R. Carballo, B. Covelo, and E.M. Vazquez-Lopez, Z. Anorg. Allg. Chem. 628, 468 (2002).

    CAS  Google Scholar 

  18. J.L. Allen, E. Paillard, P.D. Boyle, and W.A. Henderson, Acta Cryst. E 68, m749 (2012).

    CAS  Google Scholar 

  19. G. Gokila, A. Thiruvalluvar, and C. Ramachandra Raja, IUCR Data 4, x190202 (2019).

    CAS  Google Scholar 

  20. G. Gokila, A. Thiruvalluvar, and C. Ramachandra Raja, IUCR Data 4, x190593 (2019).

    CAS  Google Scholar 

  21. G. Gokila, A. Thiruvalluvar, and C. Ramachandra Raja, IUCR Data 4, x190039 (2019).

    CAS  Google Scholar 

  22. G. Gokila, A. Thiruvalluvar, and C. Ramachandra Raja, IUCR Data 4, x190982 (2019).

    CAS  Google Scholar 

  23. R. Carballo, A. Castineiras, S. Balboa, and B. Covelo, J. Niclos Polyhedron 21, 2811 (2002).

    CAS  Google Scholar 

  24. I. Irsai, A. Lupan, C. Majdik, and R. Silaghi dumitrescu studia, UBB Chemia LXII, 495 (2017).

    Google Scholar 

  25. S. StellaMary, S. Shahil, P. Kirupavathy, P. Mythili, P. Srinivasan, T. Kanagasekar, and R. Gopalakrishnan, Spectrochim. Acta, Part A 71, 10 (2008).

    Google Scholar 

  26. N. Goel and N. Binay Kumar, Mater. Res. Bull. 48, 1632 (2013).

    CAS  Google Scholar 

  27. S. Dhanuskodi and K. Vasantha, Spectrochim. Acta, Part A 61, 1777 (2005).

    CAS  Google Scholar 

  28. S. Dhanuskodi and P.A. Angelimary, J. Cryst. Growth 253, 424 (2003).

    CAS  Google Scholar 

  29. S. Ishwar Bhat, P. Mohan Rao, V. Upadyaya, and H.S. Nagaraja, J. Cryst. Growth 236, 318 (2002).

    CAS  Google Scholar 

  30. J. Zhang, R. Dou, D. Zhang, Q. Zhang, and S. Yin, J. Mol. 1118, 378 (2016).

    CAS  Google Scholar 

  31. S. Karthigha, S. Kalainathan, F. Hamada, M. Yamada, and Y. Kondo, RSC Adv. 6, 33159 (2016).

    CAS  Google Scholar 

  32. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi. Accessed 19 Jan 2020

  33. M. Balci, Basic 1H and 13C NMR Spectroscopy (Amsterdam: Elsevier Science, 2005) (ISBN 9780444518118).

    Google Scholar 

  34. R. Aarthi, P. Umarani, and C. Ramachandra Raja, Appl. Phys. A Mater. Sci. Process. 124, 498 (2018).

    Google Scholar 

  35. R. Aarthi and C. Ramachandra Raja, J. Mater. Sci. Mater. Electron. 30, 6947 (2019).

    CAS  Google Scholar 

  36. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).

    CAS  Google Scholar 

  37. T. Thilak, M.B. Ahamed, and G. Vinitha, Optik 124, 4716 (2013).

    CAS  Google Scholar 

  38. R. Mohandoss, S. Manikandan, T.C. Sabari Girisun, S. Dhanuskodi, and S. Manivannan, Opt. Spectrosc. 117, 469 (2014).

    Google Scholar 

  39. Y.B. Band, Optical properties and applications of reverse saturable absorbers.Methods of Laser Spectroscopy, ed. Y. Prior, A. Ben-Reuven, and M. Rosenbluh (Boston, MA: Springer, 1986),

    Google Scholar 

  40. H.-L. Fan, Q. Ren, X.-Q. Wang, T.-B. Li, J. Sun, G.-H. Zhang, D. Xu, G. Yu, and Z.-H. Sun, J. Nat. Sci. 1, 2009 (2009).

    Google Scholar 

  41. G. Assanto, Z. Wang, D.J. Hagan, and E.W. Vanstryland, Appl. Phys. Lett. 67, 2120 (1995).

    Google Scholar 

  42. C. Lei, Z. Yang, B. Zhang, M.-H. Lee, Q. Jing, Z. Chen, X.-C. Huang, Y. Wang, S. Pan, and M.R.S.A. Janjua, Phys. Chem. 16, 20089 (2014).

    CAS  Google Scholar 

  43. Z. Sun, T. Chen, N. Cai, J. Chen, L. Li, Y. Wang, J. Luo, and M. Hong, New J. Chem. 35, 2804 (2011).

    CAS  Google Scholar 

  44. P. Karuppasamy, V. Sivasubramani, M. Senthil pandiyan, and P. Ramasamy, RSC Adv. 6, 105 (2016).

    Google Scholar 

  45. K. Sivakumar, R. Saravana Kumar, R. Mohan Kumar, R. Kanagadurai, and S. Sagadevan, Mater. Res. Bull. 19, 937 (2016).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ramachandra Raja.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokila, G., Aarthi, R. & Ramachandra Raja, C. Structural, Spectral, and Optical Characterization of Potassium bis(2-methyllactato)borate Hemihydrate Crystal. J. Electron. Mater. 49, 6130–6135 (2020). https://doi.org/10.1007/s11664-020-08354-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08354-w

Keywords

Navigation