Skip to main content
Log in

Sintering Behavior and Microwave Dielectric Properties of Low-Permittivity SrMgSi2O6 Ceramic

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Low-permittivity SrMgSi2O6 microwave dielectric ceramics were synthesized via a conventional solid-state reaction method. Further, their sintering behavior as well as structural and microwave dielectric properties were studied. The x-ray diffraction patterns of the SrMgSi2O6 and Sr2MgSi2O7 ceramics were compared; both the samples were confirmed to be tetragonal. Meanwhile, the microwave dielectric properties of the samples were related to their microscopic morphology. In addition, the SrMgSi2O6 ceramics had a low sintering temperature of 1125°C; they exhibited good microwave dielectric performances with a relative permittivity of εr = 6.7, a quality factor Q × f = 25,800 GHz, and temperature coefficient of the resonator frequency τf = −46 ppm/°C. Therefore, the ceramics exhibit potential for application in microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.K. Choi, S.W. Jang, and E.S. Kim, Mater. Res. Bull. 67, 234 (2015).

    Article  CAS  Google Scholar 

  2. B. Ullah, W. Lei, Y.F. Yao, X.C. Wang, X.H. Wang, M. UrRahman, and W.Z. Lu, J. Alloys Compd. 763, 990 (2018).

    Article  CAS  Google Scholar 

  3. D. Zhou, L.X. Pang, D.W. Wang, Z.M. Qi, and M. Reaney, ACS Sustain. Chem. Eng. 6, 11138 (2018).

    Article  CAS  Google Scholar 

  4. W. Lei, Z.Y. Zou, Z.H. Chen, B. Ullah, A. Zeb, X.K. Lan, W.Z. Lu, G.F. Fan, X.H. Wang, and X.C. Wang, J. Am. Ceram. Soc. 101, 25 (2018).

    Article  CAS  Google Scholar 

  5. H. Yu, T. Luo, L. He, and J. Liu, Adv. Appl. Ceram. 118, 98 (2018).

    Article  Google Scholar 

  6. H. Zhou, X. Tan, X. Chen, and H. Ruan, J. Alloys Compd. 731, 839 (2018).

    Article  CAS  Google Scholar 

  7. H. Zhou, J. Gong, N. Wang, and X. Chen, Ceram. Int. 42, 8822 (2016).

    Article  CAS  Google Scholar 

  8. Y. Tian, Y. Tang, K. Xiao, C. Li, L. Duan, and L. Fang, J. Alloys Compd. 777, 1 (2019).

    Article  CAS  Google Scholar 

  9. B. Tang, Q. Xiang, Z. Fang, X. Zhang, Z. Xiong, H. Li, C. Yuan, and S. Zhang, Ceram. Int. 45, 11484 (2019).

    Article  CAS  Google Scholar 

  10. H.X. Yuan, X.M. Chen, and M.M. Mao, J. Am. Ceram. Soc. 92, 2286 (2009).

    Article  CAS  Google Scholar 

  11. H. Zhou, J. Huang, X. Tan, G. Fan, X. Chen, and H. Ruan, J. Mater. Sci. Mater. Electron. 28, 15258 (2017).

    Article  CAS  Google Scholar 

  12. X.Q. Song, W.Z. Lu, X.C. Wang, X.H. Wang, G.F. Fan, R. Muhammad, and W. Lei, J. Eur. Ceram. Soc. 38, 1529 (2018).

    Article  CAS  Google Scholar 

  13. L. Cheng, P. Liu, X. Chen, W. Niu, G. Yao, C. Liu, X. Zhao, Q. Liu, and H. Zhang, J. Alloys Compd. 513, 373 (2012).

    Article  CAS  Google Scholar 

  14. K.C. Feng, P.Y. Chen, P.H. Wu, C.S. Chen, and C.S. Tu, J. Alloys Compd. 765, 75 (2018).

    Article  CAS  Google Scholar 

  15. M. Xiao, Y. Wei, H. Sun, J. Lou, and P. Zhang, J. Mater. Sci. Mater. Electron. 29, 20339 (2018).

    Article  CAS  Google Scholar 

  16. B.K. Choi, G.N. Sun, and E.S. Kim, Ceram. Int. 39, S677 (2013).

    Article  CAS  Google Scholar 

  17. I.P. Sahu, D.P. Bisen, R.N. Baghel, and K.V.R. Murthy, J. Mater. Sci. Mater. Electron. 27, 7573 (2016).

    Article  CAS  Google Scholar 

  18. K. Wang, T. Yin, H. Zhou, X. Liu, J. Deng, S. Li, C. Lu, and X. Chen, J. Eur. Ceram. Soc. 40, 381 (2020).

    Article  CAS  Google Scholar 

  19. X. Fu, L. Fang, S. Niu, and H. Zhang, J. Lumin. 142, 163 (2013).

    Article  CAS  Google Scholar 

  20. M.M. Abdullah, G. Bhagavannarayana, and M.A. Wahab, J. Mater. Sci. 45, 4088 (2010).

    Article  CAS  Google Scholar 

  21. B.C. Tofield and W.R. Scott, J. Solid State Chem. 10, 183 (1974).

    Article  CAS  Google Scholar 

  22. S.D. Ramarao and V.R.K. Murthy, Scripa. Mater. 69, 274 (2013).

    Article  CAS  Google Scholar 

  23. A.J. Bosman and E.E. Havinga, Phys. Rev. 129, 1593 (1963).

    Article  CAS  Google Scholar 

  24. S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, J. Am. Ceram. Soc. 66, 421 (2010).

    Article  Google Scholar 

  25. C. Li, H. Xiang, M. Xu, Y. Tang, and L. Fang, J. Eur. Ceram. Soc. 38, 1524 (2018).

    Article  CAS  Google Scholar 

  26. C. Li, C. Yin, J. Chen, H. Xiang, Y. Tang, and L. Fang, J. Eur. Ceram. Soc. 38, 5246 (2018).

    Article  CAS  Google Scholar 

  27. I.M. Reaney, I. Qazi, and W.E. Lee, J. Appl. Phys. 88, 6708 (2000).

    Article  CAS  Google Scholar 

  28. H. Zhou, N. Wang, J. Gong, G. Fan, and X. Chen, J. Alloys Compd. 688, 8 (2016).

    Article  CAS  Google Scholar 

  29. S. George, V.K. Sajith, M.T. Sebastian, S. Raman, and P. Mohanan, J. Adv. Dielect. 01, 209 (2012).

    Article  Google Scholar 

  30. U. Došler, M.M. Kržmanc, and D. Suvorov, J. Eur. Ceram. Soc. 30, 413 (2010).

    Article  Google Scholar 

  31. H. Wang, Q. Zhang, H. Yang, and H. Sun, Ceram. Int. 34, 1405 (2008).

    Article  CAS  Google Scholar 

  32. M. Macek Krzmanc, A. Meden, and D. Suvorov, J. Eur. Ceram. Soc. 27, 2957 (2007).

    Article  CAS  Google Scholar 

  33. A. Yokoi, H. Ogawa, A. Kan, and Y. Nakamura, J. Eur. Ceram. Soc. 27, 2989 (2007).

    Article  CAS  Google Scholar 

  34. K.M. Manu, C. Karthik, R. Ubic, M.T. Sebastian, and X.M. Chen, J. Am. Ceram. Soc. 96, 3842 (2013).

    Article  CAS  Google Scholar 

  35. M.M. Krzmanc, M. Valant, and D. Suvorov, J. Eur. Ceram. Soc. 25, 2835 (2005).

    Article  CAS  Google Scholar 

  36. R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, J. Eur. Ceram. Soc. 25, 2865 (2005).

    Article  CAS  Google Scholar 

  37. I.S. Cho, G.K. Choi, J.S. An, J.R. Kim, and K.S. Hong, Mater. Res. Bull. 44, 173 (2009).

    Article  CAS  Google Scholar 

  38. M.M. Abdullah, S.A. Siddiqui, and S.M. Al-Abbas, J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08171-1.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Nos. 61761015 and 11664008) and the Natural Science Foundation of Guangxi Province (Nos. 2017GXNSFFA198011, 2017GXNSFDA198027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhou, H., Hu, S. et al. Sintering Behavior and Microwave Dielectric Properties of Low-Permittivity SrMgSi2O6 Ceramic. J. Electron. Mater. 49, 5989–5993 (2020). https://doi.org/10.1007/s11664-020-08327-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08327-z

Keywords

Navigation