Skip to main content

Advertisement

Log in

Thermally Stimulated Current Study and Relaxation Behaviour of Annealed Copolymer P(VDF-TrFE) Films for Potential Pyroelectric Energy Harvesting

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of annealing treatment on the polarization of copolymer P(VDF-TrFE) free-standing films were thoroughly studied by the thermally stimulated current (TSC) method using decomposition analysis and first-order kinetic theory. The TSC measurement mainly revealed three depolarization peaks, which are known as the β, α and Curie mode (ρ) peaks in P(VDF-TrFE). The origin of the TSC peaks and their relaxation behaviour were correlated with structural, morphological and electrical properties such as ferroelectricity, dielectricity and pyroelectricity. Spin-coated copolymer thin films with thicknesses of 300 nm were also prepared from 5 wt.% solutions. Both free-standing and thin films were initially annealed in the range of their Curie temperature up to the melting point [80–140°C] to increase their crystallinity. A remnant polarization current of 76.7 mC m−2, which gives a pyroelectric coefficient of 31 μC m−2K−1 and a figure of merit FD of 86 μC m−2K−1 (1 kHz), was obtained from the sample annealed at 100°C, where the percentage of crystallinity was maximum and the phase was about to transition from ferroelectric to paraelectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Mizutani, T. Yamada, and M. Ieda, J. Phys. D Appl. Phys. 14, 6 (1981).

    Google Scholar 

  2. R. Sagar, M.S. Gaur, and B.S. Bhadoria, Vacuum 156, 375 (2018).

    CAS  Google Scholar 

  3. G. Teyssedre, A. Bernes, and C. Lacabanne, Thermochim. Acta 226, 65 (1993).

    CAS  Google Scholar 

  4. C.Y. Chen, C.Y. Tsai, M.H. Xu, C.T. Wu, C.Y. Huang, T.H. Lee, and Y.K. Fuh, Express Polym. Lett. 13, 6 (2019).

    Google Scholar 

  5. A. Proto, M. Penhaker, S. Conforto, and M. Schmid, Trends Biotechnol. 35, 7 (2017).

    Google Scholar 

  6. X.S. Zhang, M. Han, B. Kim, J.F. Bao, J. Brugger, and H. Zhang, Nano Energy 47, 410 (2018).

    CAS  Google Scholar 

  7. W.C. Gan and W.H.A. Majid, Org. Electron. 26, 121 (2015).

    CAS  Google Scholar 

  8. M.S. Jayalakshmy and J. Philip, Compos. Sci. Technol. 109, 6 (2015).

    CAS  Google Scholar 

  9. Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, and C.R. Bowen, J. Mater. Chem. A 5, 14 (2017).

    Google Scholar 

  10. L.M. Blinov, V.M. Fridkin, S.P. Palto, A.V. Bune, P.A. Dowben, and S. Ducharme, Phys.-Usp. 43, 3 (2000).

    Google Scholar 

  11. R.K. Vasudevan, N. Balke, P. Maksymovych, S. Jesse, and S.V. Kalinin, Appl. Phys. Rev. 4, 2 (2017).

    Google Scholar 

  12. A. Roggero, E. Dantras, and C. Lacabanne, J. Polym. Sci., Part B: Polym. Phys. 55, 18 (2017).

    Google Scholar 

  13. F.A. Viola, A. Spanu, P.C. Ricci, A. Bonfiglio, and P. Cosseddu, Sci. Rep. 8, 1 (2018).

    CAS  Google Scholar 

  14. N. Spampinato, J. Maiz, G. Portale, M. Maglione, G. Hadziioannou, and E. Pavlopoulou, Polymer 149, 66 (2018).

    CAS  Google Scholar 

  15. R.I. Mahdi, W.C. Gan, and W.H. Majid, Sensors 14, 10 (2014).

    Google Scholar 

  16. S. Ma, T. Ye, T. Zhang, Z. Wang, K. Li, M. Chen, J. Zhang, Z. Wang, S. Ramakrishna, and L. Wei, Adv. Mater. Technol. (Weinheim, Ger.) 3, 7 (2018).

    Google Scholar 

  17. C. Khoon-Keat, K. Swee-Leong, and L. Kok-Tee, J. Telecommun. Electron. Comput. Eng. (JTEC) 10, 1 (2018).

    Google Scholar 

  18. N. Abdul Halim, PhD Diss. (University of Malaya, 2010).

  19. M. Poulsen, S. Ducharme, and I.E.E.E. Trans, Dielectr. Electr. Insul. 17, 4 (2010).

    Google Scholar 

  20. V. Bharti and Q.M. Zhang, Phys. Rev. B 63, 18 (2001).

    Google Scholar 

  21. T. Furukawa, Adv. Colloid Interface Sci. 71, 183 (1997).

    Google Scholar 

  22. N. Benrekaa, A. Gourari, M. Bendaoud, and K. Ait-Hamouda, Thermochim. Acta 413, 1 (2004).

    Google Scholar 

  23. J. Van Turnhout, Polym. J. 2, 2 (1971).

    Google Scholar 

  24. K.R. Sature, B.J. Patil, S.S. Dahiwale, V.N. Bhoraskar, and S.D. Dhole, J. Lumin. 192, 486 (2017).

    CAS  Google Scholar 

  25. J.J. Del Val, A. Alegria, J. Colmenero, and C. Lacabanne, J. Appl. Phys. 59, 11 (1986).

    Google Scholar 

  26. A.P. Indolia and M.S. Gaur, J. Therm. Anal. Calorim. 113, 2 (2013).

    Google Scholar 

  27. G. Teyssedre, A. Bernes, and C. Lacabanne, J. Polym. Sci., Part B: Polym. Phys. 33, 6 (1995).

    Google Scholar 

  28. H.P. Diogo and J.J.M. Ramos, Carbohydr. Res. 343, 16 (2008).

    Google Scholar 

  29. N. Mzabi, H. Smaoui, H. Guermazi, Y. Mlik, S. Agnel, and A. Toureille, Am. J. Eng. Appl. Sci. (2009). https://doi.org/10.3844/ajeassp.2009.120.126.

    Article  Google Scholar 

  30. D. Mao, B.E. Gnade, and M.A. Quevedo-Lopez, Ferroelectrics-Physical Effects, ed. M. Lallart (Croatia: IntechOpen, 2011), p. 90.

    Google Scholar 

  31. J. Choi, C.N. Borca, P.A. Dowben, A. Bune, M. Poulsen, S. Pebley, S. Adenwalla, S. Ducharme, L. Robertson, and V. Fridkin, Phys. Rev. B 61, 8 (2000).

    Google Scholar 

  32. Y.Y. Choi, J. Hong, S. Hong, H. Song, D.S. Cheong, and K. No, Phys. Status Solidi RRL 4, 3 (2010).

    Google Scholar 

  33. Z. Fu, W. Xia, W. Chen, J. Weng, J. Zhang, J. Zhang, Y. Jiang, and G. Zhu, Macromolecules 49, 10 (2016).

    Google Scholar 

  34. S. Cheon, H. Kang, H. Kim, Y. Son, L.Y. Lee, H.J. Shin, S.W. Kim, and J.H. Cho, Adv. Funct. Mater. 28, 2 (2018).

    Google Scholar 

  35. A.N. Arshad, M.H.M. Wahid, M. Rusop, W.H.A. Majid, R.H.Y. Subban, and M.D. Rozana, J. Nanomater. (2019).

  36. U. Valiyaneerilakkal, A. Singh, C.K. Subash, K. Singh, S.M. Abbas, and S. Varghese, Polym. Compos. 38, 8 (2017).

    Google Scholar 

  37. I. Terzić, N.L. Meereboer, M. Acuautla, G. Portale, and K. Loos, Macromolecules 52, 1 (2018).

    Google Scholar 

  38. N.L. Meereboer, I. Terzić, H.H. Mellema, G. Portale, and K. Loos, Macromolecules 52, 4 (2019).

    Google Scholar 

  39. K. El Hami, H. Yamada, and K. Matsushige, Appl. Phys. A 72, 3 (2001).

    Google Scholar 

  40. K. Lau, Y. Liu, H. Chen, and R.L. Withers, Adv. Condens. Matter Phys. (2013).

  41. Y.Y. Choi, J. Hong, D.S. Leem, M. Park, H. Song, T.H. Sung, and K. No, J. Mater. Chem. 21, 13 (2011).

    Google Scholar 

  42. M. Mai, G. Liu, C. Zhu, and X. Ma, Ferroelectrics 550, 1 (2019).

    Google Scholar 

  43. A. Navid and L. Pilon, Smart Mater. Struct. 20, 2 (2011).

    Google Scholar 

  44. S.B. Lang, Phys. Today 58, 8 (2005).

    Google Scholar 

  45. A. Navid, C.S. Lynch, and L. Pilon, Smart Mater. Struct. 19, 5 (2010).

    Google Scholar 

  46. G.R. Li and H. Ohigashi, Jpn. J. Appl. Phys. 31, 8R (1992).

    Google Scholar 

  47. G.W. Chen and W.H.A. Majid, in IEEE International Conference on Semiconductor Electronics (2006), pp. 468–471.

  48. C.R. Bowen, J. Taylor, E. Le Boulbar, D. Zabek, and V.Y. Topolov, Mater. Lett. 138, 243 (2015).

    CAS  Google Scholar 

  49. S. Yamanaka, J. Kim, A. Nakajima, T. Katou, Y. Kim, T. Fukuda, K. Yoshii, Y. Nishihata, M. Baba, and N. Yamada, Adv. Sustain. Syst. 1, 3 (2017).

    Google Scholar 

Download references

Acknowledgments

This work was funded by the UMRG Programme RP038D-17AFR, Fundamental Research Grant Scheme FRGS FP113-2019A and University of Malaya Postgraduate Research Grant PG026-2015A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Abd. Majid.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, N., Majid, W.H.A. & Halim, N.A. Thermally Stimulated Current Study and Relaxation Behaviour of Annealed Copolymer P(VDF-TrFE) Films for Potential Pyroelectric Energy Harvesting. J. Electron. Mater. 49, 5585–5599 (2020). https://doi.org/10.1007/s11664-020-08297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08297-2

Keywords

Navigation