Skip to main content

Advertisement

Log in

Postcomposition Preparation and Supercapacitive Properties of Polyaniline Nanotube/Graphene Oxide Composites with Interfacial Electrostatic Interaction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polyaniline nanotubes (PANI-T) and graphene oxide (GO) have been compounded by a postcomposition method with the assistance of electrostatic adsorption. Using this so-called postcomposition method, both the electric double-layer capacitance of the GO and the pseudocapacitance of the conducting polymer can be utilized. PANI-T prepared by a rapid mixing method was positively charged by pretreatment with (3-aminopropyl)triethoxysilane (APTES). PANI/GO composites were obtained by mixing the positively charged PANI-T and negatively charge GO with the assistance of electrostatic attraction. Charge–discharge measurements in 1 mol L−1 H2SO4 aqueous electrolyte revealed that the specific capacitance of PANI-T/GO-10% could reach 1220 F g−1 at a current density of 0.5 A g−1, being much higher than the value of 648 F g−1 for PANI-T. After 500 cycles of charge–discharge testing, the composite retained 97% of its capacitance. These enhanced supercapacitive properties can be attributed to the two types of energy storage mechanism and the electrostatic interaction between GO and PANI-T. Preparation of such PANI-T/GO composite electrode materials by electrostatic adsorption thus provides an efficient approach for improvement of the supercapacitive properties of conducting polymers or metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Yang, B.N. Gu, and W.Q. Yang, ACS Appl. Mater. Interfaces 11, 30360 (2019).

    Article  CAS  Google Scholar 

  2. S.X. Xiong, N.N. Yang, and J. Chu, J. Electron. Mater. 48, 6666 (2019).

    Article  CAS  Google Scholar 

  3. W. Fan, Y.E. Miao, and T.X. Liu, RSC Adv. 5, 9228 (2015).

    Article  CAS  Google Scholar 

  4. P.D. More, P.R. Jadhav, and A.A. Ghanwat, Mater. Electron. 28, 17839 (2017).

    Article  CAS  Google Scholar 

  5. S.X. Xiong, Y. He, and X.K. Zhang, Biomass Convers. Biorefinery (2019). https://doi.org/10.1007/s13399-019-00525-y.

    Article  Google Scholar 

  6. D. Nam, Y. Heo, and S. Cheong, Appl. Surf. Sci. 440, 730 (2018).

    Article  CAS  Google Scholar 

  7. K.Z. Htut, M. Kim, and E. Lee, Synth. Met. 227, 61 (2017).

    Article  CAS  Google Scholar 

  8. X.M. Wu and M. Lian, J. Power Sources 362, 184 (2017).

    Article  CAS  Google Scholar 

  9. L.L. Zhang and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    Article  CAS  Google Scholar 

  10. B.E. Conway, V. Birss, and J. Wojtowicz, J. Power Sources 66, 1 (2019).

    Article  Google Scholar 

  11. J.P. Zheng and T.R. Jow, J. Power Sources 62, 155 (1996).

    Article  CAS  Google Scholar 

  12. J.J. Lin, S. Yan, X.J. Zhang, and Y.R. Liu, NANO 14, 1950049 (2019).

    Article  CAS  Google Scholar 

  13. N. Arsalani, A.G. Tabrizi, and L.S. Ghadimi, Mater. Electron. 29, 6077 (2018).

    Article  CAS  Google Scholar 

  14. S.X. Xiong, F. Yang, and H. Jiang, Electrochim. Acta 85, 235 (2012).

    Article  CAS  Google Scholar 

  15. L. Tang, Z.K. Yang, and F. Duan, Mater. Electron. 28, 15804 (2017).

    Article  CAS  Google Scholar 

  16. X.T. Sun, N. Hui, and X.L. Luo, Microchim. Acta 184, 889 (2017).

    Article  CAS  Google Scholar 

  17. B.T. DiTullio, C.J. Wright, and P. Hayes, Colloid Polym. Sci. 296, 637 (2019).

    Article  CAS  Google Scholar 

  18. Y. Wang, X.M. Wu, and W.Z. Zhang, Mater. Chem. Phys. 209, 23 (2018).

    Article  CAS  Google Scholar 

  19. S.X. Xiong, Y. Zhang, and Y.Y. Wang, High Perform. Polym. (2019). https://doi.org/10.1177/0954008319890644.

    Article  Google Scholar 

  20. K.C. Xia, G.X. Wang, and H.L. Zhang, J. Nanoparticle Res. 19, 254 (2017).

    Article  CAS  Google Scholar 

  21. K. Zhan, T. Yin, and Y. Xue, Front. Mater. Sci. 12, 273 (2018).

    Article  Google Scholar 

  22. S. Mondal, U. Rana, and S. Malik, J. Phys. Chem. C 121, 7573 (2017).

    Article  CAS  Google Scholar 

  23. E.A. Jafari, M. Moradi, and S. Borhani, Phys. E 99, 16 (2018).

    Article  CAS  Google Scholar 

  24. N.L. Chen, Y.P. Ren, and P.P. Kong, Appl. Surf. Sci. 392, 71 (2017).

    Article  CAS  Google Scholar 

  25. A.G. Tabrizi, N. Arsalani, and A. Mohammadi, Electrochim. Acta 265, 379 (2018).

    Article  CAS  Google Scholar 

  26. Z.M. Sen, W.Z. Kai, and D.Q. Feng, Adv. Mater. Res. 476, 1446 (2012).

    Google Scholar 

  27. Y.H. Jin and M.Q. Ji, Colloids Surf. A: Physicochem. Eng. Asp. 464, 17 (2015).

    Article  CAS  Google Scholar 

  28. Q.Q. Zhang, Y. Li, and W. Feng, Electrochim. Acta 90, 95 (2013).

    Article  CAS  Google Scholar 

  29. D.W. Wang, F. Li, and J. Zhao, ACS Nano 3, 1745 (2009).

    Article  CAS  Google Scholar 

  30. R. Kakarla, C. Byung, and S. Kwang, Synth. Met. 10, 1934 (2009).

    Google Scholar 

  31. N. Li, J.X. Xu, and L.J. Xu, J. Nanosci. Nanotechnol. 7, 4961 (2015).

    Article  CAS  Google Scholar 

  32. X. Wang and P.S. Lee, J. Mater. Res. 30, 1 (2015).

    Google Scholar 

  33. L.P. Zheng, X.Y. Wang, and H.F. An, J. Solid State Electrochem. 15, 675 (2011).

    Article  CAS  Google Scholar 

  34. H.R. Naderi, P. Norouzi, and M.R. Ganjali, Appl. Surf. Sci. 366, 533 (2016).

    Article  CAS  Google Scholar 

  35. M.M. Yang, B. Cheng, and H.H. Song, Electrochim. Acta 55, 7021 (2010).

    Article  CAS  Google Scholar 

  36. S.P. Zhou, H.M. Zhang, and Q. Zhao, Carbon 52, 440 (2013).

    Article  CAS  Google Scholar 

  37. N.R. Chiou, L.J. Lee, and A.J. Epstein, Chem. Mater. 19, 3589 (2007).

    Article  CAS  Google Scholar 

  38. P. Pavlí, K. Lenka, and N. Lucie, Chem. Pap. 71, 379 (2017).

    Article  CAS  Google Scholar 

  39. Y. Liu, R.G. Deng, and Z. Wang, J. Mater. Chem. 22, 13619 (2012).

    Article  CAS  Google Scholar 

  40. D.Y. Gui, C.L. Liu, and F.Y. Chen, Appl. Surf. Sci. 307, 172 (2014).

    Article  CAS  Google Scholar 

  41. L.Y. Li and Y.Y. Zheng, High Perform. Polym. 1 (2016).

  42. L. Mao, K. Zhang, and J.S. Wu, J. Mater. Chem. 22, 80 (2012).

    Article  CAS  Google Scholar 

  43. Z. Gao, W.L. Yang, and J. Wang, Energy Fuels 27, 568 (2013).

    Article  CAS  Google Scholar 

  44. S. Liu, X.H. Liu, and Z.P. Li, New J. Chem. 35, 369 (2011).

    Article  CAS  Google Scholar 

  45. H.L. Wang, Q.L. Hao, and X.J. Yang, ACS Appl. Mater. Interfaces 2, 821 (2010).

    Article  CAS  Google Scholar 

  46. P. Shreyasi and K.C. Kalyan, Mater. Today: Proc. 5, 9776 (2018).

    Google Scholar 

Download references

Acknowledgments

This work was supported by Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization (HZXYKFKT201804), The Youth Innovation Team of Shaanxi Universities, Coal Washing & Preparation Center, Ningxia Coal Industry co., Ltd, CHN ENERGY, and Peak Plan of Xi’an University of Science and Technology. Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JM5027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanxin Xiong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xiong, S., Wang, Y. et al. Postcomposition Preparation and Supercapacitive Properties of Polyaniline Nanotube/Graphene Oxide Composites with Interfacial Electrostatic Interaction. J. Electron. Mater. 49, 4076–4084 (2020). https://doi.org/10.1007/s11664-020-08128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08128-4

Keywords

Navigation