Skip to main content
Log in

Structural, SEM and Nucleation Characterization of Electrochemically Synthesized CuInSe2 Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Near-stoichiometric CuInSe2 thin films were synthesized by one-step electrodeposition on molybdenum-coated glass substrates. Cyclic voltammetry measurements were firstly used to investigate the electrodeposition mechanisms. The electrochemical, structural, composition and nucleation properties of these films were investigated by cyclic voltammetry, scanning electron microscopy (SEM) and x-ray diffraction (XRD) using an energy dispersive x-ray spectrometer. Analysis of the nucleation mechanisms indicated that the electrodeposition of CuInSe2 from a single bath solution involved an instantaneous 3-D nucleation. An appropriate deposition-imposed potential range of −700 to −400 mV/SCE was determined, although the reduction peak of indium occurred around −960 mV/SCE. The most suitable deposition potential for film preparation was determined to be −500 mV/SCE. The XRD results showed that the films exhibit a polycrystalline tetragonal CuInSe2 phase with (112) orientation. The composition of the film deposited at −500 mV/SCE is very close to the stoichiometric ratio of 1:1:2 according to energy-dispersive x-ray spectroscopy measurements. We discuss the results obtained for the SEM and structural properties of the latter films, which were subjected to a post-annealing process under vacuum at temperatures of 300, 400 and 500°C for 30 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Kodigala, Thin films and nanostructures Cu(In1-xGax)Se2based thin film solar cells (Cambridge: Academic Press, 2010).

    Google Scholar 

  2. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, and A.W.Y. Ho-Baillie, Prog. Photovolt. Res. Appl. 27, 3 (2019).

    Article  Google Scholar 

  3. R.N. Bhattacharya, J. Electrochem. Soc. 130, 2040 (1983).

    Article  CAS  Google Scholar 

  4. G. Hodes, T. Engelhard, D. Cahen, L.L. Kazmerski, and C.R. Herrington, Thin Sol. Films 128, 93 (1985).

    Article  CAS  Google Scholar 

  5. R.N. Bhattacharya and R. Rajeshwar, Sol. Cells 16, 237 (1986).

    Article  CAS  Google Scholar 

  6. J. Herrero and J. Ortega, Sol. Energy Mater. 20, 53 (1990).

    Article  CAS  Google Scholar 

  7. S. Massaccesi, S. Sanchez, and J. Vedel, J. Electroanal. Chem. 412, 95 (1996).

    Article  Google Scholar 

  8. F. Caballero-Briones, A. Palacios-Padros, and F. Sanz, Electrochim. Acta 56, 9556 (2011).

    Article  CAS  Google Scholar 

  9. R.N. Bhattacharya, M.-K. Oh, and Y. Kim, Sol. Energy Mater. Sol. Cells 98, 198 (2012).

    Article  CAS  Google Scholar 

  10. J. Sun, S.K. Batabyal, P.D. Tran, and L.H. Wong, J. Alloys Comp. 591, 127 (2014).

    Article  CAS  Google Scholar 

  11. F.Y. Liu, B. Wang, Y. Lai, J. Li, Z. Zhang, and Y. Liu, J. Electrochem. Soc. 157, D523 (2010).

    Article  CAS  Google Scholar 

  12. H. Bouima, A. Zegadi, F.Z. Satour, A. Zouaoui, and A. Hassam, J. Electron. Mater. 48, 4099 (2019).

    Article  CAS  Google Scholar 

  13. R.W. Birkmire, L.C. Dinetta, P.G. Lasswell, J.D. Meakin, and J.E. Phillips, Sol. Cells 16, 419 (1986).

    Article  CAS  Google Scholar 

  14. E. Ahmed, A. Zegadi, A.E. Hill, R.D. Pilkington, R.D. Tomlinson, and W. Ahmed, J. Mater. Proc. Technol. 77, 260 (1998).

    Article  Google Scholar 

  15. F.Z. Satour and A. Zegadi, Infrared Phys. Technol. 96, 238 (2019).

    Article  CAS  Google Scholar 

  16. Y.Q. Lai, J. Liu, J. Yang, B. Wang, F.Y. Liu, Z.A. Zhang, J. Li, and Y.X. Liu, J. Electrochem. Soc. 158, D704 (2011).

    Article  CAS  Google Scholar 

  17. V.S. Saji and C.-W. Lee, RSC Adv. 3, 10058 (2013).

    Article  CAS  Google Scholar 

  18. Y. Lai, C. Han, C. Yan, and F. Liu, J. Alloys Comp. 557, 40 (2013).

    Article  CAS  Google Scholar 

  19. R.C. Valderrama and M. Miranda-Hern, Electrochim. Acta 53, 3714 (2008).

    Article  CAS  Google Scholar 

  20. F.Y. Liu, C. Huang, Y. Lai, Z. Zhang, J. Li, and Y. Liu, J. Alloys Comp. 509, L129 (2011).

    Article  CAS  Google Scholar 

  21. Y. Lai, F. Liu, J. Li, Z. Zhang, and Y. Liu, J. Electroanal. Chem. 639, 187 (2010).

    Article  CAS  Google Scholar 

  22. A. Patterson, Phys. Rev. 56, 978 (1939).

    Article  CAS  Google Scholar 

  23. H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, and H. Weller, Langmuir 21, 1931 (2005).

    Article  CAS  Google Scholar 

  24. V. Tallapally, T.A. Nakagawara, D.O. Demchenko, Ü. ÖzgÜrb, and I.U. Arachchige, Nanoscale 10, 20296 (2018).

    Article  CAS  Google Scholar 

  25. V. Tallapally, R.J.A. Esteves, L. Nahar, and I.U. Arachchige, Chem. Mater. 28, 5406 (2016).

    Article  CAS  Google Scholar 

  26. Y. Xue, B. Yu, W. Li, S. Feng, Y. Wang, S. Huang, C. Zhang, and Z. Qiao, Superlattices Microstruct. 112, 311 (2017).

    Article  CAS  Google Scholar 

  27. L. Zhang, F.D. Jiang, and J.Y. Feng, Sol. Energy Mater. Sol. Cells 80, 483 (2003).

    Article  CAS  Google Scholar 

  28. C.J. Huang, T.H. Meen, M.Y. Lai, and W.R. Chen, Sol. Energy Mater. Sol. Cells 82, 553 (2004).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Directorate-General for Scientific Research and Technological Development (DGRSDT-Algeria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameur Zegadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manallah, K., Haddad, Y., Satour, F.Z. et al. Structural, SEM and Nucleation Characterization of Electrochemically Synthesized CuInSe2 Thin Films. J. Electron. Mater. 49, 3956–3963 (2020). https://doi.org/10.1007/s11664-020-08122-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08122-w

Keywords

Navigation