Skip to main content
Log in

Switching Transient Analysis and Characterization of an E-Mode B-Doped GaN-Capped AlGaN DH-HEMT with a Freewheeling Schottky Barrier Diode (SBD)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents a systematic study of Al0.23Ga0.77N/GaN/AlxGa1−xN double-heterojunction high-electron-mobility transistors (DH-HEMTs) with a boron-doped P+ GaN cap layer under the gate. The boron-doped GaN cap layer shows great potential to form a high-bandgap Schottky gate in DH-HEMT devices to increase the resistivity of the GaN cap with excellent structural characteristics. Thus, the polarization-induced field in the GaN cap layer can be used to raise the conductive band of the device in the normally OFF operation. In this paper, these AlGaN/GaN power-switching devices with freewheeling Schottky barrier diodes are examined in their working states. In comparison with conventional HEMT power devices, the HEMT with a B-doped GaN cap offers the lowest switching charges, area-specific ON-state resistance, and energy losses. Therefore, this study clearly shows the advantage of GaN transistors for power electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mohanbabu, N. Mohankumar, N. Anbuselvan, D. Godwin Raj, and C.K. Sarkar, Solid State Electron. (2014). https://doi.org/10.1016/j.sse.2013.09.009.

    Article  Google Scholar 

  2. A. Mohanbabu, N. Mohankumar, D. Godwin Raj, P. Sarkar, and S.K. Saha, Superlattices Microstruct. (2017). https://doi.org/10.1016/j.spmi.2017.01.043.

    Article  Google Scholar 

  3. A. Mohanbabu, N. Mohankumar, D. Godwin Raj, and P. Sarkar, Physica E (2017). https://doi.org/10.1016/j.physe.2017.05.005.

    Article  Google Scholar 

  4. A. Mohanbabu, N. Mohankumar, D. Godwin Raj, P. Sarkar, and S.K. Saha, Int. J. Numer. Model. Electron. Netw. Devices Fields (2017). https://doi.org/10.1002/jnm.2276.

    Article  Google Scholar 

  5. A. Mohanbabu, N. Mohankumar, and R. Saravanakumar, Superlattices Microstruct. (2017). https://doi.org/10.1016/j.spmi.2017.10.020.

    Article  Google Scholar 

  6. T. Baghdadli, S. Ould Saad Hamady, S. Gautier, T. Moudakir, B. Benyoucef, and A. Ougazzaden, Physica Stat. Sol. C Curr. Top. Solid State Phys. (2009). https://doi.org/10.1002/pssc.200880896.

    Article  Google Scholar 

  7. B. Miroslav, V. Marian, M. Pavol, M. Marián, Ř. Vlastimil, W. Dong, H. Andreas, S. Peter, and R. Robert, in NANOCON Conference Proceedings, Brno, Czech Republic, EU, Oct 14th–16th 2015.

  8. C.G. Van de Walle, C. Stampfl, and J. Neugebauer, J. Cryst. Growth (1998). https://doi.org/10.1016/S0022-0248(98)00340-6.

    Article  Google Scholar 

  9. H. Kim, F.J. Fälth, and T.G. Andersson, J. Electron. Mater. (2001). https://doi.org/10.1007/s11664-001-0122-z.

    Article  Google Scholar 

  10. T. Kimura, Y. Aoki, K. Horibuchi, and D. Nakamura, AIP J. Appl. Phys. (2016). https://doi.org/10.1063/1.4972472.

    Article  Google Scholar 

  11. S.V. Novikov and C.T. Foxon, J. Cryst. Growth (2017). https://doi.org/10.1016/j.jcrysgro.2017.01.007.

    Article  Google Scholar 

  12. Y. Liao, D.A. Collins, and W. Zhang, in United States, Patent Application Publication, Jul. 2016, US 20160099382.

  13. T.F. Chang, T.C. Hsiao, C.F. Huang, W.H. Kuo, S.F. Lin, G.S. Samudra, and Y.C. Liang, IEEE Trans. Electron Devices (2015). https://doi.org/10.1109/ted.2014.2352276.

    Article  Google Scholar 

  14. N.M. Shrestha, Y. Li, and E.Y. Chang, Semicond. Sci. Technol. (2016). https://doi.org/10.1088/0268-1242/31/7/075006.

    Article  Google Scholar 

  15. N. Anbuselvan, N. Mohankumar, and A. Mohanbabu, Int. J. Numer. Model. Electron. Netw. Devices Fields (2019). https://doi.org/10.1002/jnm.2609.

    Article  Google Scholar 

  16. Z. Liu, Master thesis, Blacksburg, Virginia, 2014.

  17. J.-Y. Lee, B.-R. Park, H. Kim, J. Kim, and H.-Y. Cha, Electron. Mater. Lett. (2014). https://doi.org/10.1007/s13391-014-4128-0.

    Article  Google Scholar 

  18. TCAD Sentaurus, Sdevice User Guide, ver.G-2016, Synopsys.

  19. S.K. Saha, Technology Computer Aided Design: Simulation for VLSI MOSFET, ed. C.K. Sarkar (Boca Raton: CRC Press, Taylor & Francis, 2013).

    Chapter  Google Scholar 

  20. A. Ougazzaden, M.A. Poisson, V. Ravindran, A. Soltani, and J.C. De Jaeger, in United States, Patent Application Publication, Nov.6, US 2014/0327012 A1.

  21. F. Benkhelifa, S. Müller, V.M. Polyakov, and O. Ambacher, IEEE Electron Device Lett. (2015). https://doi.org/10.1109/LED.2015.2459597.

    Article  Google Scholar 

  22. A. Raman, S. Dasgupta, S. Rajan, J.S. Speck, and U.K. Mishra, Jpn. J. Appl. Phys. (2008). https://doi.org/10.1143/JJAP.47.3359.

    Article  Google Scholar 

  23. G. Meneghesso, M. Meneghini, and E. Zanoni, Jpn. J. Appl. Phys. (2014). https://doi.org/10.7567/JJAP.53.100211.

    Article  Google Scholar 

  24. Use gate charge to design the gate drive circuit for power MOSFETs and IGBTs, Application Note AN-944, International IOR Rectifier.

  25. TCAD Sentaurus application notes. SolvNet. https://solvnet.synopsys.com/retrieve/026036.html. Accessed December 2012.

  26. R. McArthur, in Advanced power technology, Application note APT0103 Rev-Oct. 2001.

  27. R. Reiner, in Thesis, Freiburg im Breisgau, Nov. 2016.

  28. S.-H. Park, J.-G. Lee, C.-H. Cho, Y.-I. Choi, H. Kim, and H.-Y. Cha, J. Semicond. Technol. Sci. (2016). https://doi.org/10.5573/JSTS.2016.16.2.215.

    Article  Google Scholar 

  29. L. Bin, E.L. Piner, and T. Palacios, IEEE Electron Device Lett. (2010). https://doi.org/10.1109/LED.2010.2040704.

    Article  Google Scholar 

  30. B. Sun, Z. Zhang, and M.A.E. Andersen, in Proceedings of 3rd International Conference on Intelligent Green Building and Smart Grid, IEEE (2018).

  31. Z. Meng, Y.-F. Wang, L. Yang, and W. Li, MDPI Open Access J. 10, 1 (2017).

    Google Scholar 

  32. T. Wang, J. Ma, and E. Matioli, IEEE Electron Device Lett. (2018). https://doi.org/10.1109/LED.2018.2842031.

    Article  Google Scholar 

  33. J.-Y. Lee, B.-R. Park, H. Kim, J. Kim, and H.-Y. Cha, Electron. Mater. Lett. (2014). https://doi.org/10.1007/s13391-014-4128-0.

    Article  Google Scholar 

  34. Y.K. Verma, V. Mishra, P.K. Verma, and S.K. Gupta, Int. J. Electron. (2019). https://doi.org/10.1080/00207217.2018.1545931.

    Article  Google Scholar 

  35. Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, IEEE Trans. Electron Devices (2007). https://doi.org/10.1109/TED.2007.908601.

    Article  Google Scholar 

  36. S.L. Selvaraj, K. Nagai, and T. Egawa, in 68th Device Research Conference, August 2010.

  37. F. Lee, S. Liang-Yu, C.-H. Wang, W. Yuh-Renn, and J. Huang, IEEE Electron Device Lett. 1, 1 (2015). https://doi.org/10.1109/LED.2015.2395454.

    Article  CAS  Google Scholar 

  38. M. Ťapajna, O. Hilt, E. Bahat-Treidel, J. Würfl, and J. Kuzmík, IEEE Electron Device Lett. (2016). https://doi.org/10.1109/LED.2016.2535133.

    Article  Google Scholar 

  39. T. Kondo, Y. Akazawa, and N. Iwata, Jpn. J. Appl. Phys. (2019). https://doi.org/10.7567/1347-4065/ab43b7.

    Article  Google Scholar 

  40. E. Canatoa, M. Meneghinia, A. Nardoa, F. Masina, A. Barbatoa, M. Barbatoa, A. Stockmanb, A. Banerjeeb, P. Moensb, E. Zanonia, and G. Meneghessoa, Microelectron. Reliab. (2019). https://doi.org/10.1016/j.microrel.2019.06.026.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baskaran Subramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, B., Anandan, M., Veerappan, S. et al. Switching Transient Analysis and Characterization of an E-Mode B-Doped GaN-Capped AlGaN DH-HEMT with a Freewheeling Schottky Barrier Diode (SBD). J. Electron. Mater. 49, 4091–4099 (2020). https://doi.org/10.1007/s11664-020-08113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08113-x

Keywords

Navigation