Skip to main content
Log in

Electron-Beam-Induced Current Study of Dislocations and Leakage Sites in GaN Schottky Barrier Diodes

  • Topical Collection: 18th Conference on Defects (DRIP XVIII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work aims to clarify the electrical activities of threading dislocations and their relation with leakage sites in homoepitaxial GaN Schottky barrier diodes based on the electron-beam-induced current (EBIC) technique and transmission electron microscopy (TEM). First, the recombination activities of threading dislocations in epilayers grown on different substrates are compared by EBIC. The dislocation type is characterized based on etch pit measurements and TEM. The dislocation density and character are strongly affected by defects in the substrate. The recombination strength of dislocations is revealed to be correlated with their type. It is found that single dislocations including both edge and mixed type exhibit weak (< 5%) EBIC contrast, while dislocation clusters show strong contrast (up to 30%). Second, leakage sites in Schottky diodes are visualized by EBIC under reverse bias. There is no direct correlation between the initial leakage sites and threading dislocations; whereas, instead of dislocations, a variety of initial leakage/breakdown sites are found, including grown-in pit defects as initial breakdown sites and hillocks at the Schottky interface acting as strong leakage sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fujita, Jpn. J. Appl. Phys. 54, 030101 (2015).

    Article  Google Scholar 

  2. H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P.R. Chalker, M. Charles, K.J. Chen, N. Chowdhury, R. Chu, C. De Santi, M. De Souza, S. Decoutere, L. Di Cioccio, B. Eckardt, T. Egawa, P. Fay, J.J. Freedsman, L. Guido, O. Häberlen, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K.B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E.M.S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M.J. Uren, M. Van Hove, D.J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, and Y. Zhang, J. Phys. D Appl. Phys. 51, 163001 (2018).

    Article  Google Scholar 

  3. I.C. Kizilyalli, A.P. Edwards, O. Aktas, T. Prunty, and D. Bour, IEEE Trans. Electron Devices 62, 414 (2015).

    Article  CAS  Google Scholar 

  4. H. Ohta, N. Kaneda, F. Horikiri, Y. Narita, T. Yashida, T. Mishima, and T. Nakamura, IEEE Electron Device Lett. 36, 1180 (2015).

    Article  CAS  Google Scholar 

  5. A. Usui, H. Sunakawa, A. Sakai, and A.A. Yamaguchi, Jpn. J. Appl. Phys. 36, 899 (1997).

    Article  Google Scholar 

  6. K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, and H. Seki, J. Cryst. Growth 237–239, 912 (2002).

    Article  Google Scholar 

  7. Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, and A. Usui, Jpn. J. Appl. Phys. 42, L1 (2003).

    Article  CAS  Google Scholar 

  8. K. Xu, J.F. Wang, and G.Q. Ren, Chin. Phys. B 24, 066105 (2015).

    Article  Google Scholar 

  9. J. Liu, J. Huang, X. Gong, J. Wang, K. Xu, Y. Qiu, D. Cai, T. Zhou, G. Ren, and H. Yang, CrystEngComm 13, 5929 (2011).

    Article  CAS  Google Scholar 

  10. E.G. Brazel, M.A. Chin, and V. Narayanamurti, Appl. Phys. Lett. 74, 2367 (1999).

    Article  CAS  Google Scholar 

  11. B. Kim, D. Moon, K. Joo, S. Oh, Y.K. Lee, Y. Park, Y. Nanishi, and E. Yoon, Appl. Phys. Lett. 104, 102101 (2014).

    Article  Google Scholar 

  12. S. Usami, Y. Ando, A. Tanaka, K. Nagamatsu, M. Deki, M. Kushimoto, S. Nitta, Y. Honda, H. Amano, Y. Sugawara, Y.Z. Yao, and Y. Ishikawa, Appl. Phys. Lett. 112, 182106 (2018).

    Article  Google Scholar 

  13. J. Elsner, R. Jones, P.K. Sitch, V.D. Porezag, M. Elstner, T. Frauenheim, M.I. Heggie, S. Öberg, and P.R. Briddon, Phys. Rev. Lett. 79, 3672 (1997).

    Article  CAS  Google Scholar 

  14. T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, Appl. Phys. Lett. 76, 3421 (2000).

    Article  CAS  Google Scholar 

  15. J.L. Weyher, S. Lazar, L. Macht, Z. Liliental-Weber, R.J. Molnar, S. Müller, V.G.M. Sivel, G. Nowak, and I. Grzegory, J. Cryst. Growth 305, 384 (2007).

    Article  CAS  Google Scholar 

  16. L. Lu, Z.Y. Gao, B. Shen, F.J. Xu, S. Huang, Z.L. Miao, Y. Hao, Z.J. Yang, G.Y. Zhang, X.P. Zhang, J. Xu, and D.P. Yu, J. Appl. Phys. 104, 123525 (2008).

    Article  Google Scholar 

  17. Y. Yao, Y. Ishikawa, Y. Sugawara, D. Yokoe, M. Sudo, N. Okada, and K. Tadatomo, Superlattices Microstruct. 99, 83 (2016).

    Article  CAS  Google Scholar 

  18. P.B. Hirsch, A. Howie, P.B. Nicholson, D.W. Pashley, and M.J. Whelan, Electron Microscopy of Thin Crystals, 2nd ed. (Malabar: Krieger, 1977), pp. 247–275.

    Google Scholar 

  19. T. Sugahara, H. Sato, M.S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L.T. Romano, and S. Sakai, Jpn. J. Appl. Phys. 37, L398 (1998).

    Article  CAS  Google Scholar 

  20. M.A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).

    Article  Google Scholar 

  21. J.Y. Wang, Y. Oshima, Y.J. Cho, Y. Shi, and T. Sekiguchi, Superlattices Microstruct. 99, 77 (2016).

    Article  CAS  Google Scholar 

  22. M. Albrecht, J.L. Weyher, B. Lucznik, I. Grzegory, and S. Porowski, Appl. Phys. Lett. 92, 231909 (2008).

    Article  Google Scholar 

  23. J. Huang, K. Xu, Y.M. Fan, J.F. Wang, J.C. Zhang, and G.Q. Ren, Nanoscale Res. Lett. 9, 649 (2014).

    Article  Google Scholar 

  24. J. Chen, W. Yi, T. Kimura, S. Takashima, M. Edo, and T. Sekiguchi, Appl. Phys. Express 12, 051010 (2019).

    Article  CAS  Google Scholar 

  25. H.J. Leamy, J. Appl. Phys. 53, R51 (1982).

    Article  CAS  Google Scholar 

  26. T. Sekiguchi and K. Sumino, Rev. Sci. Instrum. 66, 4277 (1995).

    Article  CAS  Google Scholar 

  27. J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido, and S. Tsurekawa, J. Appl. Phys. 96, 5490 (2004).

    Article  CAS  Google Scholar 

  28. J. Chen, T. Sekiguchi, J.Y. Li, S. Ito, W. Yi, and A. Ogura, Appl. Phys. Lett. 106, 102109 (2015).

    Article  Google Scholar 

  29. J. Chen, T. Sekiguchi, N. Fukata, M. Takase, T. Chikyo, K. Yamabe, R. Hasunuma, Y. Akasaka, S. Inumiya, Y. Nara, and K. Yamada, Appl. Phys. Lett. 89, 22 (2006).

    Google Scholar 

  30. J. Chen and T. Sekiguchi, in Compendium of Surface and Interface Analysis, ed. By The Surface Science Society of Japan (Springer, Singapore, 2018), p. 149.

  31. E.B. Yakimov, J. Phys. Condens. Matter 14, 13069 (2002).

    Article  CAS  Google Scholar 

  32. E.B. Yakimov, A.Y. Polyakov, I.-H. Lee, and S.J. Pearton, J. Appl. Phys. 123, 161543 (2018).

    Article  Google Scholar 

  33. W. Lee, H.J. Lee, S.H. Park, K. Watanabe, K. Kumagai, T. Yao, J.H. Chang, and T. Sekiguchi, J. Cryst. Growth 351, 83 (2012).

    Article  CAS  Google Scholar 

  34. V. Voronenkov, N. Bochkareva, R. Gorbunove, P. Latyshev, Y. Lelikov, Y. Rebane, A. Tsyuk, A. Zubrilov, and Y. Shreter, Jpn. J. Appl. Phys. 52, 08JE14 (2013).

    Article  Google Scholar 

  35. W. Yi, J. Chen, S. Higuchi, and T. Sekiguchi, Appl. Phys. Express 12, 051005 (2019).

    Article  CAS  Google Scholar 

  36. L. Sang, B. Ren, M. Sumiya, M. Liao, Y. Koide, A. Tanaka, Y. Cho, Y. Harada, T. Nabatame, T. Sekiguchi, S. Usami, Y. Honda, and H. Amano, Appl. Phys. Lett. 111, 122107 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan through its Program for research and development of next-generation semiconductor to realize energy-saving society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Yi, W., Kumar, A. et al. Electron-Beam-Induced Current Study of Dislocations and Leakage Sites in GaN Schottky Barrier Diodes. J. Electron. Mater. 49, 5196–5204 (2020). https://doi.org/10.1007/s11664-020-08081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08081-2

Keywords

Navigation