Skip to main content
Log in

Gallium Phosphide Solar Cell Structures with Improved Quantum Efficiencies

  • Topical Collection: 61st Electronic Materials Conference 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gallium phosphide (GaP) solar cell structures with improved quantum efficiencies were realized using a modified liquid phase epitaxy (LPE) technique and diodes formed using semi-transparent Schottky contacts. The improvement is due to the addition of a small amount of aluminum to the gallium and phosphorus containing LPE melt. The Al reduces the background concentration of oxygen in the melt, which is known to produce deep trap states in GaP. Additionally, it was found that by depositing an aluminum (Al)-rich AlGaP layer on top of the active GaP and then selectively etching it away, the surface morphology of the active layer was significantly improved. Thus, the modified LPE technique eliminates the major problem of meniscus lines associated with the standard LPE method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Corkish, Sol. Cells 31, 537 (1991).

    Article  CAS  Google Scholar 

  2. F. Ernst and P. Pirouz, J. Appl. Phys. 64, 4526 (1988).

    Article  CAS  Google Scholar 

  3. A. De Vos, J. Phys. D Appl. Phys. 13, 839 (1980).

    Article  Google Scholar 

  4. C. Henry, J. Appl. Phys. 51, 4494 (1980).

    Article  CAS  Google Scholar 

  5. T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, Appl. Phys. Lett. 70, 381 (1997).

    Article  CAS  Google Scholar 

  6. T. Grassman, D. Chmielewski, S. Carnevale, J. Carlin, and S. Ringel, in Photovoltaic Specialists Conference (2016), pp. 2036–2039.

  7. D. Berdebes, J. Bhosale, K.H. Montgomery, X. Wang, A.K. Ramdas, J.M. Woodall, and M.S. Lundstrom, IEEE J. Photovolt. 3, 1342 (2012).

    Article  Google Scholar 

  8. J. Akinlami and O. Olatunji, J. Nat. Sci. Eng. Technol. 13, 18 (2014).

    Google Scholar 

  9. B. Hicks and D.F. Manley, Solid State Commun. 7, 1463 (1969).

    Article  CAS  Google Scholar 

  10. B. Jayant Baliga, J. Electrochem. Soc. 133, 5C (1986).

    Article  Google Scholar 

  11. M. Leys, M. Pistol, H. Titze, and L. Samuelson, J. Electron. Mater. 18, 25 (1989).

    Article  CAS  Google Scholar 

  12. J. Woodall, Science 208, 908 (1980).

    Article  CAS  Google Scholar 

  13. C. Allen, J.-H. Jeon, and J. Woodall, Sol. Energy. Mater. Sol. Cells 94, 865 (2010).

    Article  CAS  Google Scholar 

  14. P. Capper, S. Irvine, and T. Joyce, Epitaxial Crystal Growth: Method and Materials, 2nd edn. (Springer, 2017), pp. 309-312.

  15. S. Simeonov, E. Kafedjiiska, and A. Guerassimov, Sol. Cells 20, 99 (1987).

    Article  CAS  Google Scholar 

  16. W. Gartner, Phys. Rev. 116, 84 (1959).

    Article  CAS  Google Scholar 

  17. D. Lynch, W. Hunter, in Handbook of Optical Constants of Solids, ed. by Palik, 2nd edn. (Elsevier, 1991), pp. 293–294.

  18. M. Small, K. Bachem, and R. Potemski, J. Crystal Growth 39, 216 (1977).

    Article  CAS  Google Scholar 

  19. M. Small, A. Blakeslee, K. Shih, and R. Potemski, J. Crystal Growth 30, 257 (1975).

    Article  CAS  Google Scholar 

  20. A. Armstrong, A. Arehart, and S. Ringel, J. Appl. Phys. 97, 083529 (2005).

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by U.S. Army (Grant No. W911NF1910130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ying Siao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siao, HY., Bunk, R.J. & Woodall, J.M. Gallium Phosphide Solar Cell Structures with Improved Quantum Efficiencies. J. Electron. Mater. 49, 3435–3440 (2020). https://doi.org/10.1007/s11664-019-07848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07848-6

Keywords

Navigation