Skip to main content

Advertisement

Log in

The Effect of Indium Doping on Deep Level Defects and Electrical Properties of CdZnTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CdZnTe (CZT) ingots doped with different concentrations of indium (2 ppm, 5 ppm, 8 ppm, and 11 ppm) were grown by the Vertical Bridgman Method. The charge transport behaviors of CZT wafers were characterized by Thermally Stimulated Current (TSC), Time of Flight technique (TOF) and Current–Voltage measurements (IV). TSC results indicate that the concentration of deep donor defects \( {\hbox{Te}}_{\rm{Cd}}^{{ 2 { + }}} \) is reduced significantly by increasing indium dopant content from 2 ppm to 8 ppm, while that of indium related traps, \( {\hbox{In}}_{\rm{Cd}}^{ + } \) and A-centers, is sharply increased. Hecht fitting and TOF results indicate that the electron mobility keeps nearly unchanged for different dopant concentrations in the region between 2 ppm and 5 ppm, but the lifetime increased greatly with increasing indium dopant concentration. Therefore, (μτ)e value was increased with higher indium dopant. The up-shift of Fermi level is also observed in the temperature-dependent IV result with the increasing of indium dopant content. Large Schottky barriers are found in detectors with higher indium concentration. High voltage x-ray response results show that the channel number shifts to the low energy side for 2 ppm dopant samples compared with best performance 5 ppm dopant samples, while the full-energy peaks are broadened for 8 ppm and 11 ppm dopant samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Eisen and A. Shor, J. Cryst. Growth 184–185, 1302 (1998).

    Article  Google Scholar 

  2. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. R: Rep. 32, 103 (2001).

    Article  Google Scholar 

  3. V.M. Zaletin, At. Energy 97, 773 (2004).

    Article  CAS  Google Scholar 

  4. V.M. Azhazha, V.E. Kutnii, A.V. Rybka, I.N. Shlyakhov, D.V. Kutnii, and A.A. Zakharchenko, At. Energy 92, 508 (2002).

    Article  CAS  Google Scholar 

  5. R. Gul, K. Keeter, R. Rodriguez, A.E. Bolotnikov, A. Hossain, G.S. Camarda, K.H. Kim, G. Yang, Y. Cui, V. Carcelén, J. Franc, Z. Li, and R.B. James, J. Electron. Mater. 41, 488 (2012).

    Article  CAS  Google Scholar 

  6. M. Fiederle, A. Fauler, J. Konrath, V. Babentsov, J. Franc, and, R.B. James, IEEE Trans. Nucl. Sci. 51, 1864 (2004).

    Article  CAS  Google Scholar 

  7. O. Panchuk, A. Savitskiy, P. Fochuk, Y. Nykonyuk, O. Parfenyuk, L. Shcherbak, M. IIashchuk, L. Yatsunyk, and P. Feychuk, J. Cryst. Growth 197, 607 (1999).

    Article  CAS  Google Scholar 

  8. M.R. Lorenz, J. Phys. Chem. Solids 23, 939 (1962).

    Article  CAS  Google Scholar 

  9. E. Watson and D. Shaw, J. Phys. C: Solid State Phys. 16, 515 (1983).

    Article  CAS  Google Scholar 

  10. G. Yang, W. Jie, Q. Li, T. Wang, G. Li, and H. Hua, J. Cryst. Growth 283, 431 (2005).

    Article  CAS  Google Scholar 

  11. L. Xu, W. Jie, X. Fu, A.E. Bolotnikov, R.B. James, T. Feng, G. Zha, T. Wang, Y. Xu, and Y. Zaman, J. Cryst. Growth 409, 71 (2015).

    Article  CAS  Google Scholar 

  12. M. Chu, S. Terterian, D. Ting, C.C. Wang, H.K. Gurgenian, and S. Mesropian, Appl. Phys. Lett. 79, 2728 (2001).

    Article  CAS  Google Scholar 

  13. M. Fiederle, C. Eiche, M. Salk, R. Schwarz, and K.W. Benz, J. Appl. Phys. 84, 6689 (1998).

    Article  CAS  Google Scholar 

  14. V. Babentsov, J. Franc, P. Hoeschl, M. Fiederle, K. Benz, N. Sochinskii, E. Dieguez, and R. James, Cryst. Res. Technol. 44, 1054 (2009).

    Article  CAS  Google Scholar 

  15. M. Pavlović and U.V. Desnica, J. Appl. Phys. 84, 2018 (1998).

    Article  Google Scholar 

  16. Q. Li, W. Jie, L. Fu, T. Wang, G. Yang, X. Bai, and G. Zha, J. Cryst. Growth 295, 124 (2006).

    Article  CAS  Google Scholar 

  17. L. Shcherbak, P. Feychuk, O. Kopach, O. Falenchuk, and O. Panchuk, J. Chim. Phys. 95, 1757 (1998).

    Article  CAS  Google Scholar 

  18. J.P. Biersack and L.G. Haggmark, Nucl. Instrum. Methods 174, 257 (1980).

    Article  CAS  Google Scholar 

  19. J.C. Erickson, H.W. Yao, R.B. James, H. Hermon, and M. Greaves, J. Electron. Mater. 29, 699 (2000).

    Article  CAS  Google Scholar 

  20. G. Zha, J. Yang, L. Xu, T. Feng, N. Wang, and W. Jie, J. Appl. Phys. 115, 043715 (2014).

    Article  Google Scholar 

  21. Y. Xu, W. Jie, P. Sellin, T. Wang, W. Liu, G. Zha, P. Veeramani, and C. Mills, J. Phys. D Appl. Phys. 42, 035105 (2009).

    Article  Google Scholar 

  22. T. Takahashi, and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).

    Article  CAS  Google Scholar 

  23. A.E. Bolotnikov, S.E. Boggs, C.M.H. Chen, W.R. Cook, and F.A. Harrison, SM Schindler. Nucl. Instrum. Methods Phys. Res. Sect. A 482, 395 (2002).

    Article  CAS  Google Scholar 

  24. A. Cola and I. Farella, Appl. Phys. Lett. 105, 203501 (2014).

    Article  Google Scholar 

  25. Z. He, G.F. Knoll, D.K. Wehe, and J. Miyamoto, Nucl. Instrum. Methods Phys. Res. Sect. A 388, 180 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51672216), the National Key R&D Program of China (2016YFB0402405, 2016YFF0101301), the Fundamental Research Funds for the Central Universities (3102019ghxm015), and the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (Grant No. 2019-TS-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Jie, W., Zha, G. et al. The Effect of Indium Doping on Deep Level Defects and Electrical Properties of CdZnTe. J. Electron. Mater. 49, 1243–1248 (2020). https://doi.org/10.1007/s11664-019-07663-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07663-z

Keywords

Navigation