Skip to main content

Advertisement

Log in

Dielectric and Breakdown Properties of MWCNT- and OMMT-Reinforced Epoxy Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Development of the power industry, especially in the field of high-power electricity, is limited by the insulating materials. The main problem of power generation equipment, especially ultra-high-voltage and high-power equipment, is the ability of insulating materials to withstanding voltage. Epoxy resin (EP) is widely used in the power industry. Therefore, it is necessary to improve the performance of EP and demonstrate an energy model of material electrical breakdown. EP has excellent insulation properties, yet poor toughness. By doping with nanomaterials, the toughness of the matrix can be improved on the premise of having little influence on insulation performance. In this paper, two kinds of nanomaterials were added into the matrix, namely multi-walled carbon nanotubes (MWCNTs) and organically modified montmorillonite (OMMT). MWCNTs are conductive, and the insulation properties of EP will be adversely affected if doped in large quantities. OMMT is a nanomaterial with lamellar structure. The toughness of EP can be improved by being doped with OMMT without adverse effect on the insulation performance. Various factors affecting the electric field strength and dielectric properties are analyzed, and models of electric and thermal breakdown are established. In addition, by observing the phenomena of material after breakdown, the energy relation equation of breakdown is re-established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.L. Wu, Y.H. Cheng, and Y.Y. Ren, J. Alloys Compd. 652, 346 (2015).

    Article  CAS  Google Scholar 

  2. H. Lv, H. Zhang, G. Ji, Z. Xu, and A.C.S. Appl, Mater. Interfaces 8, 6529 (2016).

    Article  CAS  Google Scholar 

  3. A.H.A. Hoseini, M. Arjmand, U. Sundararaj, and M. Trifkovic, Mater. Des. 125, 126 (2017).

    Article  CAS  Google Scholar 

  4. P.C. Ma, B.Z. Tang, and J.K. Kim, Carbon 46, 1497 (2008).

    Article  CAS  Google Scholar 

  5. A. Kausar, I. Rafique, and B. Muhammad, Polym. Plast. Technol. Eng. 55, 1167 (2016).

    Article  CAS  Google Scholar 

  6. T. Gong, M. Liu, H. Liu, S. Peng, T. Li, R. Bao, W. Yang, B. Xie, M. Yang, and Z. Guo, Polymer 110, 1 (2017).

    Article  Google Scholar 

  7. K. Hayashida and H. Tanaka, Adv. Funct. Mater. 22, 2337 (2012).

    Article  Google Scholar 

  8. T. Morishita, M. Matsushita, Y. Katagiri, and K. Fukumori, J. Mater. Chem. 21, 5610 (2011).

    Article  CAS  Google Scholar 

  9. Y.Y. Choi, S.H. Lee, and S.H. Ryu, Polym. Bull. 63, 47 (2009).

    Article  CAS  Google Scholar 

  10. D.M. Maria and A.A. Salinas, Skordos. J. Mater. Sci. 45, 2633–2639 (2010).

    Article  Google Scholar 

  11. J.P. Peng, H. Zhang, L.C. Tang, Y. Jia, and Z. Zhang, J. Nanosci. Nanotechnol. 13, 964–969 (2013).

    Article  CAS  Google Scholar 

  12. P. Potschke, M. Abdel-Goad, I. Alig, S. Dudkin, and D. Lellinger, Polymer (Guildf) 45, 8863–8870 (2004).

    Article  Google Scholar 

  13. M. Ieda, IEEE Trans. Electr. Insul. EI-15, 206–224 (1980).

    Article  CAS  Google Scholar 

  14. N. Shimizu, H. Katsukawa, M. Miyauchi, M. Kosaki, and K. Horii, IEEE Trans. Electr. Insul. EI-14, 256–263 (1979).

    Article  CAS  Google Scholar 

  15. M. Kosaki, N. Shimizu, and K. Horii, IEEE Trans. Electr. Insul. EI-12, 40–45 (1977).

    Article  CAS  Google Scholar 

  16. E. Husain, M.M. Mohsin, and I.E.E.E. Trans, Dielectr. Electr. Insul. 9, 932–938 (2002).

    Article  CAS  Google Scholar 

  17. S. Tsuru, M. Nakamura, K. Funaki, M. Iwakuma, J. Suehiro, M. Hara, in IEEE 5th International Conference on Properties and Application of Dielectric Materials (1997), pp. 228–231.

  18. S. Wang, T. Youping, X. Shuo, S. Qin, W. Zhixiong, and L. Li, Fusion Eng. Des. 125, 118–122 (2017).

    Article  CAS  Google Scholar 

  19. H. Tang, G. Chen, and Q. Li, Mater. Lett. 184, 143 (2016).

    Article  CAS  Google Scholar 

  20. C. Min, D. Yu, and J. Cao, Carbon 55, 116 (2013).

    Article  CAS  Google Scholar 

  21. S. Singha, M. Thomas, and I.E.E.E. Trans, Dielectr. Electr. Insul. 15, 12 (2008).

    Article  CAS  Google Scholar 

  22. Y. Yu, C.M. Ma, C. Teng, Y. Huang, H. Tien, S. Lee, and I. Wang, J. Taiwan Inst. Chem. E 44, 654 (2013).

    Article  CAS  Google Scholar 

  23. E.T. Thostenson, Z. Ren, and T. Chou, Compos. Sci. Technol. 61, 1899 (2001).

    Article  CAS  Google Scholar 

  24. M. Moniruzzaman and K.I. Winey, Macromolecules 39, 5194 (2006).

    Article  CAS  Google Scholar 

  25. W. Bauhofer and J.Z. Kovacs, Compos. Sci. Technol. 69, 1486 (2009).

    Article  CAS  Google Scholar 

  26. J. Gu, W. Dong, S. Xu, Y. Tang, L. Ye, and J. Kong, Compos. Sci. Technol. 144, 185 (2017).

    Article  CAS  Google Scholar 

  27. Y. Wang, W. Zhang, X. Wu, C. Luo, Q. Wang, J. Li, and L. Hu, Synthetic Met. 228, 18 (2017).

    Article  CAS  Google Scholar 

  28. O.K. Park, N.H. Kim, and G.H. Yoo, Compos. B Eng. 41, 2–7 (2010).

    Article  Google Scholar 

  29. M. Abdalla, D. Dean, and P. Robinson, Polymer 49, 3310–3317 (2008).

    Article  CAS  Google Scholar 

  30. C.G. Ma, Y.J. Yu, and P. Zhang, China Plast 23, 18–23 (2009).

    CAS  Google Scholar 

  31. A. Zhang, J. Luan, Y. Zheng, L. Sun, and M. Tang, Appl. Surf. Sci. 258, 8492–8497 (2012).

    Article  CAS  Google Scholar 

  32. W.P. Liu, S.V. Hoa, and M. Pugh, Compos. Sci. Technol. 65, 307–316 (2005).

    Article  CAS  Google Scholar 

  33. R.A. Vaia and K.D. Jandt, Chem. Mater. 8, 2628–2635 (1996).

    Article  CAS  Google Scholar 

  34. F. Guastavinol, A. Dardanol, A. Rattol, in Report Conference on Electrical Insulation and Dielectric Phenomena (2005), pp. 174–178.

  35. C. Zilg, D. Kaempfer, R. Thotnann, in Report Conference on Electrical Insulation and Dielectric Phenomena (2006), pp. 546–550.

  36. O. Dwyer, The Theory of Electrical Conduction and Breakdown in Solid Dielectrics (Oxford: Clarendon Press, 1973).

    Google Scholar 

  37. J. Yixuan, W. Xingzhe, and H. Hongliang, Smart Mater. Struct. 23, 085020 (2014).

    Article  Google Scholar 

  38. W. Zhizhu, J. Yixuan, and W. Xingzhe, Chin. Phys. Lett. 31, 077703 (2014).

    Article  Google Scholar 

  39. J.C. Fothergill, IEEE Trans. Electr. Insul. 26, 1124–1129 (1991).

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research was supported by the State Key Laboratory of Robotics (Grant No. 2019-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liwu Liu or Mingyan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Liu, L., Zhang, M. et al. Dielectric and Breakdown Properties of MWCNT- and OMMT-Reinforced Epoxy Composites. J. Electron. Mater. 48, 7270–7281 (2019). https://doi.org/10.1007/s11664-019-07543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07543-6

Keywords

Navigation