Skip to main content
Log in

Saturation Velocity Measurement of Al0.7Ga0.3N-Channel High Electron Mobility Transistors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gate length dependent (80 nm–5000 mm) radio frequency measurements to extract saturation velocity are reported for Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistors fabricated into radio frequency devices using electron beam lithography. Direct current characterization revealed the threshold voltage shifting positively with increasing gate length, with devices changing from depletion mode to enhancement mode when the gate length was greater than or equal to 450 nm. Transconductance varied from 10 mS/mm to 25 mS/mm, with the 450 nm device having the highest values. Maximum drain current density was 268 mA/mm at 10 V gate bias. Scattering-parameter characterization revealed a maximum unity gain bandwidth (fT) of 28 GHz, achieved by the 80 nm gate length device. A saturation velocity value of 3.8 × 106 cm/s, or 35% of the maximum saturation velocity reported for GaN, was extracted from the fT measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nanjo, M. Takeuchi, M. Suita, T. Oishi, Y. Abe, Y. Tokuda, and Y. Aoyagi, Appl. Phys. Lett. 92, 263502 (2008).

    Article  Google Scholar 

  2. H. Tokuda, M. Hatano, N. Yafune, S. Hashimoto, K. Akita, Y. Yamamoto, and M. Kuzuhara, Appl. Phys. Express 3, 121003 (2010).

    Article  Google Scholar 

  3. A.G. Baca, A.M. Armstrong, A.A. Allerman, E.A. Douglas, C.A. Sanchez, M.P. King, M.E. Coltrin, T.R. Fortune, and R.J. Kaplar, Appl. Phys. Lett. 109, 033509 (2016).

    Article  Google Scholar 

  4. S. Muhtadi, S.M. Hwang, A. Coleman, F. Asif, G. Simin, M. Chandrashekhar, and A. Khan, IEEE Electron Device Lett. 38, 7 (2017).

    Article  Google Scholar 

  5. H. Okumura, S. Suihkonen, J. Lemettinen, A. Uedono, Y. Zhang, D. Piedra, and T. Palacios, Jpn. J. Appl. Phys. 57, 04FR11 (2018).

    Article  Google Scholar 

  6. S. Bajaj, A. Allerman, A. Armstrong, T. Razzak, V. Talesara, W. Sun, S.H. Sohel, Y. Zhang, W. Lu, A.R. Arehart, F. Akyol, and S. Rajan, IEEE Electron Device Lett. 39, 2 (2018).

    Article  Google Scholar 

  7. S. Bajaj, T.-H. Hung, F. Akyol, D. Nath, and S. Rajan, Appl. Phys. Lett. 105, 263503 (2014).

    Article  Google Scholar 

  8. M.E. Coltrin, A.G. Baca, and R.J. Kaplar, ECS J. Solid State Sci. Technol. 6, 11 (2017).

    Article  Google Scholar 

  9. M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, and P.P. Ruden, IEEE Trans. Electron Devices 48, 3 (2001).

    Article  Google Scholar 

  10. M. Singh, M.A. Casbon, M.J. Uren, J.W. Pomeroy, S. Dalcanale, S. Karboyan, P.J. Tasker, M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, and M. Kuball, IEEE Electron Device Lett. 39, 10 (2018).

    Google Scholar 

  11. W. Zhang, J. Zhang, M. Xiao, L. Zhang, and Y. Hao, IEEE Electron Device Lett. 39, 9 (2018).

    Google Scholar 

  12. M. Xiao, J. Zhang, X. Duan, W. Zhang, H. Shan, J. Ning, and Y. Hao, IEEE Electron Device Lett. 39, 8 (2018).

    Article  Google Scholar 

  13. A.G. Baca, B.A. Klein, J.R. Wendt, S.M. Lepkowski, C.D. Nordquist, A.M. Armstrong, A.A. Allerman, E.A. Douglas, and R.J. Kaplar, IEEE Electron Device Lett. 40, 1 (2019).

    Article  Google Scholar 

  14. T. Razzak, S. Hwang, A. Coleman, S. Bajaj, H. Xue, Y. Zhang, Z. Jamal-Eddine, S.H. Sohel, W. Lu, A. Khan, and S. Rajan, Electron. Lett. 54, 23 (2018).

    Article  Google Scholar 

  15. B.A. Klein, A.G. Baca, A.M. Armstrong, A.A. Allerman, C.A. Sanchez, E.A. Douglas, M.H. Crawford, M.A. Miller, P.G. Kotula, T.R. Fortune, and V.M. Abate, ECS J. Solid State Sci. Technol. 6, 11 (2017).

    Article  Google Scholar 

  16. G. Vanko, T. Lalinsky, Z. Mozolova, J. Liday, P. Vogrincic, A. Vincze, F. Uherek, S. Hascık, and I. Kostic, Vacuum 82, 2 (2008).

    Google Scholar 

  17. E.A. Douglas, C.A. Sanchez, R.J. Kaplar, A.A. Allerman, and A.G. Baca, J. Vac. Sci. Technol. A 35, 2 (2016).

    Google Scholar 

  18. Y. Cai, Y. Zhou, K.M. Lau, and K.J. Chen, IEEE Trans. Electron Devices 53, 9 (2006).

    Article  Google Scholar 

  19. S. Chowdhury, B.L. Swenson, and U.K. Mishra, IEEE Electron Device Lett. 29, 6 (2008).

    Google Scholar 

  20. T. Palacios, C.-S. Suh, A. Chakraborty, S. Keller, S.P. DenBaars, and U.K. Mishra, IEEE Electron Device Lett. 27, 6 (2006).

    Google Scholar 

  21. L. Shen, T. Palacios, C. Poblenz, A. Corrion, A. Chakraborty, N. Fichtenbaum, S. Keller, S.P. Denbaars, J.S. Speck, and U.K. Mishra, IEEE Electron Device Lett. 27, 4 (2006).

    Article  Google Scholar 

  22. L. Yang, B. Hou, M. Mi, J. Zhu, M. Zhang, Q. Zhu, Y. He, L. Chen, X. Zhou, X. Ma, Y. Hao, IEEE IRPS 2017 Conference Proceedings (2017). https://doi.org/10.1109/irps.2017.7936411.

  23. C.H. Oxley, M.J. Uren, A. Coates, and D.G. Hayes, IEEE Trans. Electron Devices 53, 3 (2005).

    Google Scholar 

  24. C.H. Oxley and M.J. Uren, IEEE Trans. Electron Devices 52, 2 (2005).

    Article  Google Scholar 

  25. S. Bajaj, O.F. Shoron, P.S. Park, S. Krishnamoorthy, F. Akyol, T.-H. Hung, S. Reza, E.M. Chumbes, J. Khurgin, and S. Rajan, Appl. Phys. Lett. 107, 153504 (2015).

    Article  Google Scholar 

  26. U.V. Bhapkar and M.S. Shur, J. Appl. Phys. 82, 4 (1997).

    Article  Google Scholar 

  27. E.O. Johnson, 1958 IRE International Convention Record (1965). https://doi.org/10.1109/irecon.1965.1147520.

  28. A.Q. Huang, IEEE Electron Device Lett. 25, 5 (2004).

    Google Scholar 

Download references

Acknowledgments

The authors thank Jennifer Barrios for her assistance in device fabrication. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brianna A. Klein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, B.A., Baca, A.G., Lepkowski, S.M. et al. Saturation Velocity Measurement of Al0.7Ga0.3N-Channel High Electron Mobility Transistors. J. Electron. Mater. 48, 5581–5585 (2019). https://doi.org/10.1007/s11664-019-07421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07421-1

Keywords

Navigation