Skip to main content
Log in

Nonlinear Electrical Properties of ZnO-V2O5 Based Rare Earth (Er2O3) Added Varistors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The densification, microstructure and nonlinear electrical properties of ZnO-V2O5-MnO2-Nb2O5 varistor ceramics have been investigated with different amounts (0–2 mol.%) of Er2O3 addition. The ball milled powder mixtures have been sintered at 900°C, 1100°C and 1300°C for 1 h. The microstructure shows the presence of ZnO grains as the primary phase with secondary phases like Zn3(VO4)2, ErVO4, Zn4V2O9, Er- and Mn-rich in the intergranular layers. Generation of ErVO4 and Er-rich secondary phases at triple points and grain boundaries is found to inhibit grain growth resulting in the significant reduction of ZnO grain size, although this slightly diminishes the densification process. At a particular sintering temperature, the size of ZnO grains gets reduced over ten times when Er2O3 addition is increased from 0 mol.% to 2 mol.%. The nonlinear electrical property of the varistors improves with Er2O3 addition up to 0.5 mol.% and further addition (1–2 mol.%) does not appear to be beneficial in the chosen sintering temperatures. For varistors sintered at 1100°C, average ZnO grain size reduces from 10.8 μm in Er2O3 free sample to 7.2 μm in 0.5 mol.% Er2O3 added sample; this, in turn, significantly improves nonlinear electrical properties. The breakdown field increases from 1588 V cm−1 to 2585 V cm−1 with concurrent enhancement of nonlinear exponent value from 16 to 26 when Er2O3 concentration is raised from 0 mol.% to 0.5 mol.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Matsuoka, Jpn. J. Appl. Phys. 10, 736 (1971).

    Article  Google Scholar 

  2. X. Qu, D.C. Yao, J.R. Liu, M.H. Wang, and H.P. Zhang, J. Electron. Mater. 47, 409 (2018).

    Article  Google Scholar 

  3. T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).

    Article  Google Scholar 

  4. K. Mukae, Am. Ceram. Bull. 66, 1329 (1987).

    Google Scholar 

  5. S.C. Pillai, J. Mater. Chem. C 1, 3268 (2013).

    Article  Google Scholar 

  6. C.W. Nahm and C.H. Park, J. Mater. Sci. 36, 1671 (2001).

    Article  Google Scholar 

  7. S. Bernik, S. Macek, and A. Bui, J. Eur. Ceram. Soc. 24, 1195 (2004).

    Article  Google Scholar 

  8. A.C. Caballero, F.J. Valle, M. Villegas, C. Moure, P. Duran, and J.F. Fernandez, J. Eur. Ceram. Soc. 20, 2767 (2000).

    Article  Google Scholar 

  9. J. Wu, T.T. Li, T. Qi, Q.W. Qin, G.Q. Li, B.L. Zhu, R. Wu, and C.S. Xie, J. Electron. Mater. 41, 1970 (2012).

    Article  Google Scholar 

  10. H.H. Hng and P.L. Chan, Ceram. Int. 30, 1647 (2004).

    Article  Google Scholar 

  11. C.W. Nahm, Ceram. Int. 38, 5281 (2012).

    Article  Google Scholar 

  12. C.W. Nahm and B.C. Shin, Mater. Lett. 57, 1322 (2003).

    Article  Google Scholar 

  13. H.H. Hng and P.L. Chan, Ceram. Int. 35, 409 (2009).

    Article  Google Scholar 

  14. J.H. Park and C.-W. Nahm, J. Mater. Sci. Mater. Electron. 26, 168 (2015).

    Article  Google Scholar 

  15. Y.S. Lee, K.-S. Liao, and T.-Y. Tseng, J. Am. Ceram. Soc. 79, 2379 (1996).

    Article  Google Scholar 

  16. S.N. Bai and T.Y. Tseng, J. Electron. Mater. 21, 1073 (1992).

    Article  Google Scholar 

  17. M. Inada, Jpn. J. Appl. Phys. 17, 673 (1978).

    Article  Google Scholar 

  18. S. Anas, R. Metz, M.A. Sanoj, R.V. Mangalaraja, and S. Ananthakumar, Ceram. Int. 36, 2351 (2010).

    Article  Google Scholar 

  19. X. Ya, H. Yin, T.M. De, and T.M. Jing, Mater. Res. Bull. 33, 1703 (1998).

    Article  Google Scholar 

  20. R.N. Viswanath, S. Ramasamy, R. Ramamoorthy, P. Jayavel, and T. Nagarajan, Nanostruct. Mater. 6, 993 (1995).

    Article  Google Scholar 

  21. L.M. Levinson and H.R. Philipp, IEEE Trans. Parts Hybrids Packag. 13, 338 (1977).

    Article  Google Scholar 

  22. S. Anas, R.V. Mangalaraja, M. Poothayal, S.K. Shukla, and S. Ananthakumar, Acta Mater. 55, 5792 (2007).

    Article  Google Scholar 

  23. M. Peiteado, A.M. Cruz, Y. Reyes, J. De Frutos, D.G. Calatayud, and T. Jardiel, Ceram. Int. 40, 13395 (2014).

    Article  Google Scholar 

  24. M. Peiteado, J.F. Fernandez, and A.C. Caballero, J. Eur. Ceram. Soc. 25, 2999 (2005).

    Article  Google Scholar 

  25. S. Roy, D. Das, and T.K. Roy, J. Mater. Sci. Mater. Electron. 28, 14906 (2017).

    Article  Google Scholar 

  26. C.W. Nahm, J. Mater. Sci. Mater. Electron. 22, 1674 (2011).

    Article  Google Scholar 

  27. C.W. Nahm, J Rare Earth. 31, 276 (2013).

    Article  Google Scholar 

  28. C. Yang, D. Zhu, T. Zeng, and L. Jiao, J. Electron. Mater. 44, 2651 (2015).

    Article  Google Scholar 

  29. S. Bernik, S. Macek, and B. Ai, J. Eur. Ceram. Soc. 21, 1875 (2001).

    Article  Google Scholar 

  30. L. Hongyu, K. Hui, J. Dongmei, S. Wangzhou, and M. Xueming, J. Rare Earth 25, 120 (2007).

    Article  Google Scholar 

  31. C.W. Nahm, J. Mater. Sci. 41, 6822 (2006).

    Article  Google Scholar 

  32. C.H. Lu, N. Chyi, H.W. Wong, and W.J. Hwang, Mater. Chem. Phys. 62, 164 (2000).

    Article  Google Scholar 

  33. A. Hmood, A. Kadhim, and H. Abu Hassan, Mater. Chem. Phys. 136, 1148 (2012).

    Article  Google Scholar 

  34. A. Hmood, A. Kadhim, and H. Abu Hassan, Superlattices Microstruct. 76, 36 (2014).

    Article  Google Scholar 

  35. A. Hmood, A. Kadhim, M.A. Mahdi, and H. Abu Hassan, Int. J. Hydrogen Energy 41, 5048 (2016).

    Article  Google Scholar 

  36. A. Hmood, A. Kadhim, and H. Abu Hassan, Measurement 134, 509 (2019).

    Article  Google Scholar 

  37. M. Zhao, X. Li, T. Li, Y. Shi, and B. Li, J. Mater. Sci. Mater. Electron. 30, 450 (2019).

    Article  Google Scholar 

  38. M. Zhao, X. Li, T. Li, Y. Shi, T. Li, and B.W. Li, Ceram. Int. 44, 6912 (2018).

    Article  Google Scholar 

  39. T.Y. Li, M. Zhao, and X. Li, J. Mater. Sci. Mater. Electron. 29, 2758 (2018).

    Article  Google Scholar 

  40. S. Pandey, D. Kumar, and O. Prakash, Ceram. Int. 42, 9686 (2016).

    Article  Google Scholar 

  41. C.W. Nahm, J. Mater. Sci. Mater. Electron. 26, 4144 (2015).

    Article  Google Scholar 

  42. J.H. Park and C.W. Nahm, J. Mater. Sci. Mater. Electron. 26, 168 (2015).

    Article  Google Scholar 

  43. C.W. Nahm, J. Mater. Sci. Mater. Electron. 27, 9520 (2016).

    Article  Google Scholar 

  44. C.W. Nahm, Ceram. Int. 41, 5196 (2015).

    Article  Google Scholar 

  45. C.W. Nahm, Ceram. Int. 38, 2593 (2012).

    Article  Google Scholar 

  46. S. Roy, D. Das, and T.K. Roy, J. Alloys Compd. 749, 687 (2018).

    Article  Google Scholar 

  47. M.I. Mendelson, J. Am. Ceram. Soc. 55, 109 (1972).

    Article  Google Scholar 

  48. Z. Peng, X. Fu, Y. Zang, Z. Fu, C. Wang, L. Qi, and H. Miao, J. Alloys Compd. 508, 494 (2010).

    Article  Google Scholar 

  49. C.W. Nahm, J. Eur. Ceram. Soc. 23, 1345 (2003).

    Article  Google Scholar 

  50. C.W. Nahm, B.-C. Shin, and B.H. Min, Mater. Chem. Phys. 82, 157 (2003).

    Article  Google Scholar 

  51. C.W. Nahm, J. Mater. Sci. Mater. Electron. 24, 4129 (2013).

    Article  Google Scholar 

  52. C.W. Nahm, J.S. Heo, and G.H. Lee, Trans. Electr. Electron. Mater. 14, 213 (2014).

    Article  Google Scholar 

  53. C.W. Nahm, Ceram. Int. 38, 3489 (2012).

    Article  Google Scholar 

  54. H. Bai, M. Li, Z. Xu, R. Chu, J. Hao, H. Li, C. Chen, and G. Li, J. Eur. Ceram. Soc. 37, 3965 (2017).

    Article  Google Scholar 

  55. L. Cong, F. Zhuowei, X. Zheng, and X. Yewen, J. Electroceram. 21, 423 (2008).

    Article  Google Scholar 

  56. C.W. Nahm, J. Mater. Sci. Mater. Electron. 22, 1010 (2011).

    Article  Google Scholar 

  57. J. He, Z. Peng, Z. Fu, C. Wang, and X. Fu, J. Alloys Compd. 528, 79 (2012).

    Article  Google Scholar 

  58. A.B. Glot and I.A. Skuratovsky, Mater. Chem. Phys. 99, 487 (2006).

    Article  Google Scholar 

  59. C.W. Nahm, Mater. Sci. Semicond. Process. 16, 778 (2013).

    Article  Google Scholar 

  60. D. Xu, X. Cheng, G. Zhao, J. Yang, and L. Shi, Ceram. Int. 37, 701 (2011).

    Article  Google Scholar 

  61. N.T. Hung, N.D. Quang, and S. Bernik, J. Mater. Res. 16, 2817 (2001).

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (S. Roy) would like to express her gratitude to the COE, TEQIP-II of IIEST Shibpur for the assistantship to perform the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapatee Kundu Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Das, D. & Roy, T.K. Nonlinear Electrical Properties of ZnO-V2O5 Based Rare Earth (Er2O3) Added Varistors. J. Electron. Mater. 48, 5650–5661 (2019). https://doi.org/10.1007/s11664-019-07394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07394-1

Keywords

Navigation