Skip to main content
Log in

Achieving White Emission from Solution Processable Blends of Polyvinylene Derivative Guests into a Polyfluorene Matrix

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work we have studied the emissions from luminescent polymeric blends, aiming to obtain a white emission. Two of the materials, a polyfluorene derivative matrix poly(9,9-dihexyl-2,7-fluorene) (LaPPS 10, labeled as L10) and a polyvinylene-derivative guest (poly[(9,9-dihexyl-9H-fluorene-2,7-diyl)-1,2-ethenediyl-1,4-phenylene-1,2-ethenediyl] (LaPPS 16—L16), have not been extensively studied. The L10 was used as a matrix (host) and the L16 as a dopant (guest). A commercial polyvinylene (MDMO-PPV) was also used as a dopant. In order to achieve the white emission, it is necessary to control the energy transfer among the components of the blend. The emissions of solutions were analyzed, varying the concentration of the materials. From that, solutions of polymeric blends of L10:L16 (at different ratios) were spincoated, forming solid state films. The emission of these binary blend films were monitored as a function of the guest concentration. Therefore, in order to cover the red region of the visible spectrum, MDMO-PPV was added to the initial blend, forming a ternary blend (L10:L16:MDMO-PPV). The emissions of these blend films were studied, varying the concentration of the MDMO-PPV. Using the optimal results for the material ratios of these ternary blends, aiming for the white emission, electroluminescent devices were produced and the electroluminescence was studied. A whitish emission was obtained with the 97.5:0.5:2.0 blend, leading to the CIE coordinates 0.31:0.36.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.T. Kamtekar, A.P. Monkman, and M.R. Bryce, Adv. Mater. 22, 572 (2010).

    Article  Google Scholar 

  2. Z. Wu and D. Ma, Mater. Sci. Eng. R Rep. 107, 1 (2016).

    Article  Google Scholar 

  3. H. Sasabe and J. Kido, J. Mater. Chem. C 1, 1699 (2013).

    Article  Google Scholar 

  4. Y. Kim, J. Seol, Y. Kim, H. Ahn, and C. Park, Small 1, 1602874 (2017).

    Article  Google Scholar 

  5. G.M. Farinola and R. Ragni, J. Solid State Light 2, 1 (2015).

    Article  Google Scholar 

  6. J.F. De Deus, G.C. Faria, R.M. Faria, E.T. Iamazaki, T.D.Z. Atvars, A. Cirpan, and L. Akcelrud, J. Photochem. Photobiol. A Chem. 253, 45 (2013).

    Article  Google Scholar 

  7. J.F. de Deus, G.C. Faria, E.T. Iamazaki, R.M. Faria, T.D.Z. Atvars, and L. Akcelrud, Org. Electron. 12, 1493 (2011).

    Article  Google Scholar 

  8. G. He, Y. Li, J. Liu, and Y. Yang, Appl. Phys. Lett. 80, 4247 (2002).

    Article  Google Scholar 

  9. K.H. Yim, W.J. Doherty, W.R. Salaneck, C.E. Murphy, R.H. Friend, and J.S. Kim, Nano Lett. 10, 385 (2010).

    Article  Google Scholar 

  10. E. Moons, H. Search, C. Journals, A. Contact, M. Iopscience, and I.P. Address, J. Phys. Condens. Matter 14, 12235 (2002).

    Article  Google Scholar 

  11. C. Sekine, Y. Tsubata, T. Yamada, M. Kitano, and S. Doi, Sci. Technol. Adv. Mater. 15, 034203 (2014).

    Article  Google Scholar 

  12. H.A. Al Attar, A.P. Monkman, M. Tavasli, S. Bettington, and M.R. Bryce, Appl. Phys. Lett. 86, 121101 (2005).

    Article  Google Scholar 

  13. J. Jiang, Y. Xu, W. Yang, R. Guan, Z. Liu, H. Zhen, and Y. Cao, Adv. Mater. 18, 1769 (2006).

    Article  Google Scholar 

  14. K.S. Yook and J.Y. Lee, Adv. Mater. 26, 4218 (2014).

    Article  Google Scholar 

  15. D. Gupta, M. Katiyar, T. Deepak, A. Hazra, S.S. Verma, and A.Biswas Manoharan, Opt. Mater. 28, 1355 (2006).

    Article  Google Scholar 

  16. A. Prakash and M. Katiyar, Synth. Met. 223, 184 (2017).

    Article  Google Scholar 

  17. Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, Jpn. J. Appl. Phys. 30, 1941 (1991).

    Article  Google Scholar 

  18. L. De Boni, R.D. Fonseca, K.R.A. Cardoso, I. Grova, L. Akcelrud, D.S. Correa, and C.R. Mendonça, J. Polym. Sci. B Polym. Phys. 52, 747 (2014).

    Article  Google Scholar 

  19. M. Ferreira, C.J.L. Constantino, C.A. Olivati, M.L. Vega, D.T. Balogh, R.F. Aroca, R.M. Faria, and O.N. Oliveira, Langmuir 19, 8835 (2003).

    Article  Google Scholar 

  20. J.H. Park, J.Y. Kim, B.D. Chin, Y.C. Kim, J.K. Kim, and O.O. Park, Nanotechnology 15, 1217 (2004).

    Article  Google Scholar 

  21. G.R. Ferreira, B. Nowacki, A. Magalhães, E.R. DeAzevedo, E.L. De Sá, L.C. Akcelrud, and R.F. Bianchi, Mater. Chem. Phys. 146, 212 (2014).

    Article  Google Scholar 

  22. L. Qian, Y. Zheng, K.R. Choudhury, D. Bera, F. So, J. Xue, and P.H. Holloway, Nano Today 5, 384 (2010).

    Article  Google Scholar 

  23. B. Nowacki, E. Iamazaki, A. Cirpan, F. Karasz, T.D.Z. Atvars, and L. Akcelrud, Polymer (Guildf) 50, 6057 (2009).

    Article  Google Scholar 

  24. J.F. De Deus, M.L. Andrade, T.D.Z. Atvars, and L. Akcelrud, Chem. Phys. 297, 177 (2004).

    Article  Google Scholar 

  25. M. Ariu, M. Sims, M.D. Rahn, J. Hill, A.M. Fox, D.G. Lidzey, M. Oda, J. Cabanillas-Gonzalez, and D.D.C. Bradley, Phys. Rev. B 67, 195333 (2003).

    Article  Google Scholar 

  26. W. Renzi, F. Franchello, and N.J.A. Cordeiro, et al., J. Mater. Sci. Mater Electron 28, 17750 (2017).

    Article  Google Scholar 

  27. P.K. Lekha and E. Prasad, Chem. A Eur. J. 16, 3699 (2010).

    Article  Google Scholar 

  28. A. Monkman, C. Rothe, S. King, and F. Dias, Polyfluorenes (Berlin: Springer, 2008), pp. 187–225.

    Book  Google Scholar 

  29. J.R. Tozoni, F.E.G. Guimarães, T.D.Z. Atvars, B. Nowacki, A. Marlleta, L. Akcelrud, and T.J. Bonagamba, Eur. Polym. J. 47, 2259 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, by the National Council for Scientific and Technological Development (CNPq), Fundação Araucária, and by the National Institute for Science and Technology on Organic Electronics (INEO). The authors gratefully acknowledge the Spectroscopy Laboratory (SPEC) at PROPPG-UEL Multiuser Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Franchello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franchello, F., de Menezes, L.C.W., Renzi, W. et al. Achieving White Emission from Solution Processable Blends of Polyvinylene Derivative Guests into a Polyfluorene Matrix. J. Electron. Mater. 48, 5980–5987 (2019). https://doi.org/10.1007/s11664-019-07350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07350-z

Keywords

Navigation