Skip to main content
Log in

Tunable Non-linear Optical, Semiconducting and Dielectric Properties of In1−xMnxSe Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In1−xMnxSe (x = 0, 0.05, 0.1 and 0.15) thin films were evaporated by using the thermal evaporation technique. Both dispersion energy (Ed) and oscillating energy (Eo) were determined. The values of lattice dielectric constant (εL) and free carrier concentration/effective mass) (N/m*) were calculated. On the other hand, the values of the first order of moment (M−1), the third order of moment (M−3) and static refractive index (no) were determined. The dielectric loss (ε′) and dielectric tangent loss (ε″) for these films increased with photon energy and had the highest value near the energy gap Eg. Also, the same behavior was noticed for the real part of optical conductivity (σ1) and imaginary part of optical conductivity (σ2), the relation between Volume Energy Loss Function (VELF) and Surface Energy Loss Function (SELF) was determined. The Linear optical susceptibility (χ(1)) increased with photon energy for all compositions. The nonlinear optical parameters such as nonlinear refractive index (n2), the third-order nonlinear optical susceptibility (χ(3)) and non-linear absorption coefficient (βc), were determined theoretically. Both the electrical susceptibility (χe) and relative permittivity (εr) increased with photon energy and had the highest value near the energy gap. The semiconducting results such as density of the valence band, conduction band, and Fermi level position (Ef) were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Fuller, A. Douglas, J. Garner, T.M. Pekarek, I. Miotkowski, and A.K. Ramdas, Phys. Rev. B 65, 195211 (2002).

    Article  Google Scholar 

  2. M. Pekarek, M. Duffy, J. Garner, B.C. Crooker, I. Miotkowski, and A.K. Ramdas, J. Appl. Phys. 87, 6448 (2000).

    Article  Google Scholar 

  3. J.L. Tracy, G. Franzese, A. Byrd, J. Garner, and T.M. Pekarek, Phys. Rev B 72, 165201 (2005).

    Article  Google Scholar 

  4. D. Segev and S.-H. Wei, Phys. Rev. B 70, 184401 (2004).

    Article  Google Scholar 

  5. T.M. Pekarek, D.J. Arenas, I. Miotkowski, and A.K. Ramdas, J. Appl. Phys. 97, 10M106 (2005).

    Article  Google Scholar 

  6. D. Meda, J.H. Blackburn, L. Maxwell, J. Garner, T.M. Pekarek, I. Miotkowski, and A.K. Ramdas, J. Appl. Phys. 105, 07C521 (2009).

    Article  Google Scholar 

  7. V.V. Slyn’ko, A.G. Khandozhko, Z.D. Kovalyuk, V.E. Slyn’ko, A.V. Zaslonkin, M. Arciszewska, and W. Dobrowolski, Thin Solid Films 258, 86 (1995).

    Article  Google Scholar 

  8. M. Parlak, C. Ercelebi, I. Gunal, Z. Salaeva, and K. Allakherdiev, Thin Solid Films 258, 86 (1995).

    Article  Google Scholar 

  9. S. Gopal, C. Viswanathan, B. Karunajaran, D. Mangalaraj, and S.K. Narayandas, Cryst. Res. Technol. 40, 557 (2005).

    Article  Google Scholar 

  10. N. Benramdane, A. Bousidi, H. Tabet-Derraz, Z. Kebbab, and M. Latreche, Microelectron. Eng. 51, 645 (2000).

    Article  Google Scholar 

  11. J.S. Somghera, I.D. Agarwal, and L.B. Shaw, J. Optoelectron. Adv. Mater. 3, 627 (2001).

    Google Scholar 

  12. J. Palm, V. Probst, and H. Karg Franz, Sol. Energy 77, 757 (2004).

    Article  Google Scholar 

  13. Z.D. Kovalyuk, O.M. Sydor, and V.V. Netyaga, Semicond. Phys. Quantum Electron. Optoelectron. 7, 360 (2004).

    Google Scholar 

  14. G. Micocci and A. Tepore, Sol. Energy Mater. 22, 215 (1991).

    Article  Google Scholar 

  15. B. Kobbi and N. Kesri, Vacuum 75, 177 (2004).

    Article  Google Scholar 

  16. F.I. Mustafa, S. Gupta, N. Goyal, and S.K. Tripathi, Phys. B 405, 4087 (2010).

    Article  Google Scholar 

  17. P. Matheswaran, R. Saravana Kumar, and R. Sathyamoorthy, Vacuum 85, 820 (2011).

    Article  Google Scholar 

  18. A.A.A. Darwish, M.M. El-Nahass, and M.H. Bahlol, Appl. Surf. Sci. 276, 210 (2013).

    Article  Google Scholar 

  19. S. Boolchandani, S. Srivastava, and Y.K. Vijay, J. Nanotechnol. 2018, 9380573 (2018).

    Article  Google Scholar 

  20. K.S. Chaudhari, Y.R. Toda, A.B. Jain, and D.N. Gujarathi, Adv. Appl. Sci. 2, 84 (2011).

    Google Scholar 

  21. M. Teenaa, A.G. Kunjomana, K. Ramesh, R. Venkatesh, and N. Naresh, Sol. Energy Mater. Sol. Cells 166, 190 (2017).

    Article  Google Scholar 

  22. A.I. Hirohata, J.S. Moodera, and G.P. Berera, Thin Solid Films 510, 247 (2006).

    Article  Google Scholar 

  23. M. Kundakçi, B. Gürbulak, S. Doğan, A. Ateş, and M. Yildirim, Appl. Phys. A 90, 479 (2008).

    Article  Google Scholar 

  24. K.S. Urmila, T.A. Namitha, R.R. Philip, and B. Pradeep, Appl. Phys. A 120, 675 (2015).

    Article  Google Scholar 

  25. M.M. El-Nahass, A.-B.A. Saleh, A.A.A. Darwish, and M.H. Bahlol, Opt. Commun. 285, 1221 (2012).

    Article  Google Scholar 

  26. A. Mohan, J. Suthagar, and T. Mahalingam, in Proceedings of International Conference on Nanomaterials Applications and Properties, vol 2 (2013), p. 01NTF07-11.

  27. J.F. Sánchez-Royo, A. Segura, O. Lang, E. Schaar, C. Pettenkofer, L. Roa, and A. Chevy, J. Appl. Phys. 90, 2818 (2001).

    Article  Google Scholar 

  28. X. Li, B. Xu, G. Yu, L. Xue, and L. Yi, J. Appl. Phys. 113, 203502 (2013).

    Article  Google Scholar 

  29. C.H. Ho, Y.C. Chen, and C.C. Pan, J. Appl. Phys. 115, 033501 (2014).

    Article  Google Scholar 

  30. A.A.A. Darwish, M.M. El-Nahass, and A.E. Bekheet, J. Alloys Compd. 586, 142 (2014).

    Article  Google Scholar 

  31. R. Anuroop and B. Pradeep, J. Alloys Compd. 702, 432 (2017).

    Article  Google Scholar 

  32. A.F. Qasrawi and S.R. Shehada, Phys. E 103, 151 (2018).

    Article  Google Scholar 

  33. J. Hossain, M. Julkarnain, K.S. Sharif, and K.A. Khan, Int. J. Renew. Energy Technol Res. 2, 220 (2013).

    Google Scholar 

  34. C. Viswanathan, G.G. Rusu, S. Gopal, D. Mangalaraj, and SaK Narayandass, J. Optoelectron. Adv. Mater. 7, 705 (2005).

    Google Scholar 

  35. ASh Abdinov, R.F. Babaeva, YaG Gasanov, N.A. Ragimova, and R.M. Rzaev, Inorg. Mater. 49, 1180 (2013).

    Article  Google Scholar 

  36. M.R. Gao, Y.F. Xu, J. Jiang, and S.H. Yu, Chem. Soc. Rev. 42, 2986 (2013).

    Article  Google Scholar 

  37. R. Lindsay, Phys. Rev. 84, 569 (1951).

    Article  Google Scholar 

  38. J.J. Banewicz, R.F. Haidelberg, and A.H. Luxem, J. Phys. Chem. 65, 615 (1961).

    Article  Google Scholar 

  39. P.W. Anderson, Phys. Rev. 79, 705 (1950).

    Article  Google Scholar 

  40. V. Thanigaimani and M.A. Angadi, Thin Solid Film 245, 146 (1994).

    Article  Google Scholar 

  41. M. Wu, Y. Xiong, N. Jiang, M. Niang, and Q. Chen, J. Cryst. Growth 62, 567 (2004).

    Article  Google Scholar 

  42. T. Mahalingam, S. Thanikaikarasan, V. Dhanasekaran, A. Kathalingam, S. Velumani, and J.-K. Rhe, Mater. Sci. Eng. B 174, 257 (2010).

    Article  Google Scholar 

  43. V. Nagarajan, V. Saravanakannan, and R. Chandiramouli, Der Pharma Chemi. 7, 84 (2015).

    Google Scholar 

  44. S.S. Aplesnin, L.I. Ryabinkina, O.B. Romanova, D.A. Balaev, O.F. Demidenko, K.I. Yanushkevich, and N.S. Miroshnichenko, Phys. Sol. Stat. 49, 2082 (2007).

    Google Scholar 

  45. G.V. Lashkarev, V.I. Sichkovskyi, M.V. Radchenko, P. Aleshkevych, O.I. Dmitriev, P.E. Butorin, Z.D. Kovalyuk, R. Szymczak, A. Slawska-Waniewska, N. Nedelko, R. Yakiela, A.M. Balagurov, A.I. Beskrovnyy, and W. Dobrowolski, Semicond. Phys. Quantum Electron. Optoelectron. 14, 263 (2011).

    Article  Google Scholar 

  46. G.V. Lashkarev, V.V. Slynko, Z.D. Kovalyuk, V.I. Sichkovskyi, M.V. Radchenko, P. Aleshkevych, R. Szymczak, W. Dobrowolski, and R. Minikayev, Mater. Sci. Eng. C 27, 1052 (2007).

    Article  Google Scholar 

  47. G.V. Lashkarev, V.I. Sichkovskyi, M.V. Radchenko, A.I. Dmitriev, V.E. Slyn’ko, E.I. Slyn’ko, Z.D. Kovalyuk, P.E. Butorin, W. Knoff, T. Story, R. Szymczak, R. Jakieła, P. Aleshkevych, and W. Dobrowolski, Acta phys. Pol. A 114, 1219 (2008).

    Article  Google Scholar 

  48. T.M. Pekarek, L.H. Ranger, I. Miotkowski, and A.K. Ramdas, J. Appl. Phys. 99, 08D511 (2006).

    Article  Google Scholar 

  49. S.A. Gad, Appl. Phys. A 120, 349 (2015).

    Article  Google Scholar 

  50. S.A. Gad and A.M. Moustafa, Indn. J. Phys. 90, 903 (2016).

    Article  Google Scholar 

  51. A.I. Ali, A. Abdel Moez, and A.H. Ammar, Superlattices Microstruct 65, 285 (2014).

    Article  Google Scholar 

  52. A.I. Ali, J.Y. Son, A.H. Ammar, A. Abdel Moez, and Y.S. Kim, Results Phys. 3, 167 (2013).

    Article  Google Scholar 

  53. S.H. Wempl and M. DiDomenico Jr, Phys. Rev. Lett. 23, 1156 (1969).

    Article  Google Scholar 

  54. K. Anshu and A. Sharma, Optik 127, 48 (2016).

    Article  Google Scholar 

  55. S.R. Eliott, The physics and chemistry of solids (Chichester: Wiley, 2000).

    Google Scholar 

  56. A.B. Djurisic and E.H. Li, Opt. Commun. 157, 72 (1998).

    Article  Google Scholar 

  57. A.H. Ammar, A.M. Frid, and M.A.M. Sayam, Vacuum 66, 27 (2002).

    Article  Google Scholar 

  58. S.E. Fritz, T.W. Kelley, and C.D. Frisbie, J. Phys. Chem. B 109, 10574 (2005).

    Article  Google Scholar 

  59. R.H. Stolen and A. Ashkin, Appl. Phys. Lett. 22, 294 (1973).

    Article  Google Scholar 

  60. H. Tichá and L. Tichy, J. Optoelectron. Adv. Mater. 4, 381 (2002).

    Google Scholar 

  61. P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen, Opt. Express 13, 1508 (2005).

    Article  Google Scholar 

  62. A.A. Ziabari and F.E. Ghodsi, J. Alloys Compd. 509, 8748 (2011).

    Article  Google Scholar 

  63. B. Derkowskaa, B. Sahraouia, X.N. Phua, and W. Bala, Proceedings of SPIE—The International Society for Optical Engineering, vol. 4412 (2001)

  64. V. Gupta and A.I. Mansingh, J. Appl. Phys. 80, 1063 (1996).

    Article  Google Scholar 

  65. S.E. Braslavsky, Pure Appl. Chem. 79, 293 (2007).

    Article  Google Scholar 

  66. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1969).

    Google Scholar 

  67. A. Segura, Crystals 8, 206 (2018).

    Article  Google Scholar 

  68. K.C. Agarwal, B. Daniel, M. Grün, P. Feinäugle, C. Klingshirn, and M. Hetterich, Appl. Phys. Lett. 86, 181907 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gad, S.A., Mahmoud, G.M. & Abdel Moez, A. Tunable Non-linear Optical, Semiconducting and Dielectric Properties of In1−xMnxSe Thin Films. J. Electron. Mater. 48, 5176–5183 (2019). https://doi.org/10.1007/s11664-019-07331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07331-2

Keywords

Navigation