Skip to main content
Log in

Thermoelectric Properties of Dual Doped Bi2Sr2Co2Oy-Based Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the crystal structure and high temperature thermoelectric properties of polycrystalline Bi2–2xNa2xSr2Co2−xWxOy (0 ≤ x ≤ 0.075) samples. Powder x-ray diffraction data show that all samples are phase pure consisting of misfit-layered structure of alternately stacked hexagonal CoO2 and double rock-salt BiSrO2 layers. It is found that dual doping of Na and W in Bi2Sr2Co2Oy system is fairly effective in improving the thermoelectric properties owing to simultaneous decrease of electrical resistivity (ρ) and thermal conductivity (κ) of samples. All samples exhibit a large Seebeck coefficient (S), which seems not to be affected by the level of doping. As a result, a very high power factor (PF) of 2.82 × 10−4 W/m K2 has been obtained for x = 0.025 sample at 1000 K. The corresponding dimensionless figure of merit (zT) for this sample has been determined to be 0.35 at 1000 K, which is ∼ 2.2 times higher than zT value of the pristine sample providing a promising class of material for high-temperature thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  2. X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, Renew. Sustain. Energy Rev. 32, 486 (2014).

    Article  Google Scholar 

  3. R. Funahashi and M. Shikano, Appl. Phys. Lett. 81, 1459 (2002).

    Article  Google Scholar 

  4. J. He and T.M. Tritt, Science 357, 1369 (2017).

    Google Scholar 

  5. Y. Terasaki, K. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  Google Scholar 

  6. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys. Rev. B 62, 166 (2000).

    Article  Google Scholar 

  7. R. Funahashi, I. Matsubara, and S. Sodeoka, Appl. Phys. Lett. 76, 2385 (2000).

    Article  Google Scholar 

  8. J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).

    Article  Google Scholar 

  9. J.D. Baran, D. Kepaptsoglou, M. Molinari, N. Kulwongwit, F. Azough, R. Freer, Q.M. Ramasse, and S.C. Parker, Chem. Mater. 28, 7470 (2016).

    Article  Google Scholar 

  10. P. Brinks, B. Kuiper, E. Breckenfeld, G. Koster, L.W. Martin, G. Rijnders, and M. Huijben, Adv. Energy Mater. 4, 1301927 (2014).

    Article  Google Scholar 

  11. J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).

    Article  Google Scholar 

  12. H. Ohta, K. Sugiura, and K. Koumoto, Inorg. Chem. 47, 8429 (2008).

    Article  Google Scholar 

  13. P. Wissgott, A. Toschi, H. Usui, K. Kuroki, and K. Held, Phys. Rev. B 82, 201106 (2010).

    Article  Google Scholar 

  14. S. Lemal, J. Varignon, D.I. Bilc, and P. Ghosez, Phys. Rev. B 95, 075205 (2017).

    Article  Google Scholar 

  15. U. Hira, L. Han, K. Norrman, D.V. Christensen, N. Pryds, and F. Sher, RSC Adv. 8, 12211 (2018).

    Article  Google Scholar 

  16. H. Leligny, D. Grebille, O. Perez, A.C. Masset, M. Hervieu, and B. Raveau, Acta Cryst. Sect. B Struct. Sci. 56, 173 (2000).

    Article  Google Scholar 

  17. D. Grebille, H. Muguerra, O. Perez, E. Guilmeau, H. Rousseliere, and R. Funahashi, Acta Crystallogr. Sect. B Struct. Sci. 63, 373 (2007).

    Article  Google Scholar 

  18. T. Mizokawa, L.H. Tjeng, P.G. Steeneken, N.B. Brookes, I. Tsukada, T. Yamamoto, and K. Uchinokura, Phys. Rev. B 64, 115104 (2001).

    Article  Google Scholar 

  19. H.C. Hsu, W.L. Lee, K.K. Wu, Y.K. Kuo, B.H. Chen, and F.C. Chou, J. Appl. Phys. 111, 103709 (2012).

    Article  Google Scholar 

  20. E. Combe, R. Funahashi, F. Azough, and R. Freer, J. Mater. Res. 29, 1376 (2014).

    Article  Google Scholar 

  21. T. Yamamoto, K. Uchinokura, and I. Tsukada, Phys. Rev. B 65, 184434 (2002).

    Article  Google Scholar 

  22. G.Ç. Karakaya, B. ÖzÇelik, M.A. Torres, M.A. Madre, and A. Sotelo, J. Mater. Sci. Mater. Electron. 28, 12652 (2017).

    Article  Google Scholar 

  23. L.H. Yin, R. Ang, Z.H. Huang, Y. Liu, S.G. Tan, N.Y. Huang, B.C. Zhao, W.H. Song, and Y.P. Sun, Appl. Phys. Lett. 102, 141907 (2013).

    Article  Google Scholar 

  24. Y. Huang, B. Zhao, S. Lin, J. Yang, W. Song, R. Ang, and Y. Sun, J. Mater. Sci. 49, 4636 (2014).

    Article  Google Scholar 

  25. M.D. Petricek and L. Palatinous, JANA2006. The Crstallographic Computing System (Praha: Institute of Physics, 2006).

    Google Scholar 

  26. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

    Article  Google Scholar 

  27. A. Sotelo, M.A. Torres, G. Constantinescu, S. Rasekh, J.C. Diez, and M.A. Madre, J. Eur. Ceram. Soc. 32, 3745 (2012).

    Article  Google Scholar 

  28. A.J. Bosman and H.J.V. Daal, Adv. Phys. 19, 1 (1970).

    Article  Google Scholar 

  29. H.Q. Liu, X.B. Zhao, T.J. Zhu, Y. Song, and F.P. Wang, Curr. Appl. Phys. 9, 409 (2009).

    Article  Google Scholar 

  30. F.P. Zhang, X. Zhang, Q.M. Lu, J.X. Zhang, Y.Q. Liu, and G.Z. Zhang, Solid State Ion. 201, 1 (2011).

    Article  Google Scholar 

  31. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62, 6869 (2000).

    Article  Google Scholar 

  32. H. Itahara, C. Xia, J. Sugiyama, and T. Tani, J. Mater. Chem. 14, 61 (2004).

    Article  Google Scholar 

  33. J.C. Diez, E. Guilmeau, M.A. Madre, S. Marinel, S. Lemonnier, and A. Sotelo, Solid State Ion. 180, 827 (2009).

    Article  Google Scholar 

  34. N. Sun, S.T. Dong, B.B. Zhang, Y.B. Chen, J. Zhou, S.T. Zhang, Z.B. Gu, S.H. Yao, and Y.F. Chen, J. Appl. Phys. 114, 043705 (2013).

    Article  Google Scholar 

  35. W. Shin and N. Murayama, J. Mater. Res. 15, 382 (2000).

    Article  Google Scholar 

  36. M.A. Madre, S. Rasekh, J.C. Diez, and A. Sotelo, Mater. Lett. 64, 2566 (2010).

    Article  Google Scholar 

  37. D.J. Voneshen, K. Refson, E. Borissenko, M. Krisch, A. Bosak, A. Piovano, E. Cemal, M. Enderle, M.J. Gutmann, M. Hoesch, M. Roger, L. Gannon, A.T. Boothroyd, S. Uthayakumar, D.G. Porter, and J.P. Goff, Nat. Mater. 12, 1028 (2013).

    Article  Google Scholar 

  38. G. Xu, R. Funahashi, M. Shikano, I. Matsubara, and Y. Zhou, J. Appl. Phys. 91, 4344 (2002).

    Article  Google Scholar 

  39. S. Wang, Z. Bai, H. Wang, Q. Lü, J. Wang, and G. Fu, J. Alloys Compd. 554, 254 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the Higher Education Commission (HEC) of Pakistan (Grant No.: 1981), and the International Research Support Initiative Program of HEC for providing financial support. UH is grateful to the Department of Energy Conversion and Storage, Technical University of Denmark (DTU) for supporting her research visit.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nini Pryds or Falak Sher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hira, U., Pryds, N. & Sher, F. Thermoelectric Properties of Dual Doped Bi2Sr2Co2Oy-Based Ceramics. J. Electron. Mater. 48, 4618–4626 (2019). https://doi.org/10.1007/s11664-019-07252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07252-0

Keywords

Navigation