Skip to main content
Log in

Effects of Growth Temperature on Morphology of GaN Crystals by Na Flux Liquid Phase Epitaxial Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The morphology of GaN crystals grown in a temperature range of 800–860°C by the Na flux liquid phase epitaxial (LPE) method was observed by the optical microscope and the scanning electron microscope (SEM). Significant changes in the morphology of as-grown GaN crystals occurred with the growth temperature being increased. Differing from the crystals grown at the temperature lower than 840°C, the side morphology of crystals grown at 850°C and 860°C presented a rather integrated and flat facet observed along the m-direction. In addition, there were two distinct growth stages with lateral equilibrium epitaxial growth (Stage I) and c direction growth (Stage II) during the epitaxial growth process. Under the growth temperature of 850°C and keeping nitrogen pressure 3 MPa for 150 h, the as-grown GaN crystal had relatively higher crystalline quality, the thickness and yield of GaN-LPE crystal were about 622 μm and 15.2%, respectively. The dislocation density in the GaN crystal was also remarkably reduced to the order of 105–106 cm−2. Therefore, the continuous lateral equilibrium epitaxial growth (stage I) is feasible to achieve a large size and high quality GaN single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yamane, M. Shimada, S.J. Clarke, and F.J. Disalvo, Chem. Mater. 9, 413 (1997).

    Article  Google Scholar 

  2. H. Yamane, M. Shimada, T. Sekiguchi, and F.J. Disalvo, J. Cryst. Growth 186, 8 (1998).

    Article  Google Scholar 

  3. M. Yano, M. Okamoto, Y. K. Yap, M. Yoshimura, Y. Mori, and T. Sasaki, Jpn. J. Appl. Phys. 38, L 1121 (1999).

  4. M. Yano, M. Okamoto, Y.K. Yap, M. Yoshimura, Y. Mori, and T. Sasaki, Diam. Relat. Mater. 9, 512 (2000).

    Article  Google Scholar 

  5. D.A. Neumayer and J.G. Ekerdt, Chem. Mater. 8, 9 (1996).

    Article  Google Scholar 

  6. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  Google Scholar 

  7. H. Yamane, D. Kinno, and M. Shimada, J. Mater. Sci. 35, 801 (2000).

    Article  Google Scholar 

  8. S. Nakamura, M. Senoh, S. Nagahama, N. Isawa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 72, 211 (1998).

    Article  Google Scholar 

  9. H. Marchand, J.P. Ibbetson, P.T. Fini, P. Kozodoy, S. Keller, J.S. Speck, S.P. Denbaars, and U.K. Mishra, MRS Int. J. Nitride Semicond. Res. 3 (1998).

  10. H. Marchand, X.H. Wu, J.P. Ibbetson, P.T. Fini, P. Kozodoy, S. Keller, J.S. Speck, S.P. Denbaars, and U.K. Mishra, Appl. Phys. Lett. 73, 747 (1998).

    Article  Google Scholar 

  11. P. Kozodoy, J.P. Ibbetson, H. Marchand, P.T. Fini, S. Keller, S.P. Denbaars, J.S. Speck, and U.K. Mishra, Appl. Phys. Lett. 73, 975 (1998).

    Article  Google Scholar 

  12. Y. Zhonghai, M.A.L. Johnson, J.D. Brown, N.A. El-Masry, J.W. Cook Jr., and J.F. Schetzina, J. Cryst. Growth 195, 333 (1998).

    Article  Google Scholar 

  13. H. Marchand, J.P. Ibbetson, P.T. Fini, S. Keller, S.P. Denbaars, J.S. Speck, and U.K. Mishra, J. Cryst. Growth 195, 328 (1998).

    Article  Google Scholar 

  14. F. Kawamura, H. Umeda, M. Morishita, M. Kawahara, M. Yoshimura, Y. Mori, T. Sasaki, and Y. Kitaoka, Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 45, L1136 (2006).

  15. F. Kawamura, M. Morishita, M. Tanpo, M. Imade, M. Yoshimura, Y. Kitaoka, Y. Mori, and T. Sasaki, J. Cryst. Growth 310, 3946 (2008).

    Article  Google Scholar 

  16. F. Kawamura, M. Tanpo, N. Miyoshi, M. Imade, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, J. Cryst. Growth 311, 3019 (2009).

    Article  Google Scholar 

  17. M. Imade, M. Imanishi, Y. Todoroki, H. Imabayashi, D. Matsuo, K. Murakami, H. Takazawa, A. Kitamoto, M. Maruyama, M. Yoshimura, and Y. Mori, Appl. Phys. Express 7, 035503 (2014).

    Article  Google Scholar 

  18. M. Imade, M. Maruyama, M. Yoshimura, and Y. Mori, Jpn. J. Appl. Phys. 53, 05FA06-1(2014).

  19. F. Kawamura, M. Morishita, K. Omae, M. Yoshimura, Y. Mori, and T. Sasaki, J. Mater. Sci. Mater. Electron. 16, 29 (2005).

    Article  Google Scholar 

  20. M. Morishita, F. Kawamura, M. Kawahara, M. Yoshimura, Y. Mori, and T. Sasaki, J. Cryst. Growth 284, 91 (2005).

    Article  Google Scholar 

  21. M. Aoki, H. Yamane, M. Shimada, S. Sarayama, and F.J. Disalvo, J. Ceram. Soc. Jpn. Growth Cond. 109, 858 (2001).

    Article  Google Scholar 

  22. F. Kawamura, H. Umeda, M. Kawamura, M. Yoshimura, Y. Mori, T. Sasaki, H. Okado, K. Arakawa, and H. Mori, Jpn. J. Appl. Phys. 45, 2528 (2006).

    Article  Google Scholar 

  23. T. Iwahashi, Y. Kitaoka, F. Kawamura, M. Yoshimura, Y. Mori, T. Sasaki, R. Armitage, and H. Hirayama, Jpn. J. Appl. Phys. 46, L227 (2007).

    Article  Google Scholar 

  24. M. Morishita, F. Kawamura, M. Kawahara, M. Yoshimura, Y. Mori, and T. Sasaki, J. Cryst. Growth 284, 91 (2005).

    Article  Google Scholar 

  25. M. Aoki, H. Yamane, M. Shimada, S. Sarayama, and F.J. Disalvo, Mater. Lett. 56, 660 (2002).

    Article  Google Scholar 

  26. F. Kawamura, M. Morishita, N. Miyoshi, M. Imade, M. Yoshimura, Y. Kitaoka, Y. Mori, and T. Sasaki, J. Cryst. Growth 311, 4647 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by International Science and Technology Cooperation Program of China under Grant No. 2014DFR51240, the 111 project (B14040), the National Basic Research Program of China (973 Program) under Grant No. 2015CB654602 and the National Natural Science Foundation of China under Grant Nos. 51761145024 and 61627812.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenrong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, H., Wu, X., Li, Z. et al. Effects of Growth Temperature on Morphology of GaN Crystals by Na Flux Liquid Phase Epitaxial Method. J. Electron. Mater. 48, 3570–3578 (2019). https://doi.org/10.1007/s11664-019-07111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07111-y

Keywords

Navigation