Skip to main content
Log in

Influence of Quantum Capacitance on Charge Carrier Density Estimation in a Nanoscale Field-Effect Transistor with a Channel Based on a Monolayer WSe2 Two-Dimensional Crystal Semiconductor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A critical analysis of charge carrier statistics influenced by quantum capacitance is carried out in order to predict the electrical performance of a nanoscale metal–oxide–semiconductor field-effect transistor (MOSFET) with a channel made of a monolayer tungsten diselenide (WSe2) two-dimensional (2D) crystal semiconductor. Since quantum capacitance originating from two-dimensional electron gas in a quantum well or an inversion layer does not completely screen the quasistatic electric field during applied gate voltage, the partial penetration of an external electric field through the 2D semiconductor channel will generate excess charge carriers; thus quantum capacitance will play an important role in determining the overall charge carrier density in the channel. Therefore, common methods used to extract charge carrier density in the channel for three-dimensional (3D) crystal semiconductors will yield inaccurate results when used for 2D crystal semiconductors. To address this issue, this study proposes a modified approach for extracting charge carrier density in WSe2-based 2D semiconductors by combining the appropriate carrier statistics with consideration of quantum capacitance. In addition, the study investigates the effect of interface traps on overall capacitance, which may influence the electrical performance of a nanoscale MOSFET with monolayer WSe2 as a channel material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Giannazzo, G. Greco, F. Roccaforte, and S.S. Sonde, Crystals 8, 70 (2018).

    Article  Google Scholar 

  2. B. Sun, J. Xu, M. Zhang, L. He, H. Zhu, L. Chen, Q. Sun, and D.W. Zhang, Crystals 8, 252 (2018).

    Article  Google Scholar 

  3. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, and Y.H. Lee, Mater. Today 20, 116 (2017).

    Article  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  5. G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, and J.A. Robinson, ACS Nano 9, 11509 (2015).

    Article  Google Scholar 

  6. A. Srivastava and M.S. Fahad, Solid State Electron. 126, 96 (2016).

    Article  Google Scholar 

  7. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Article  Google Scholar 

  8. N.R. Pradhan, D. Rhodes, S. Memaran, J.M. Poumirol, D. Smirnov, S. Talapatra, S. Feng, N. Perea-Lopez, A.L. Elias, M. Terrones, P.M. Ajayan, and L. Balicas, Sci. Rep. 5, 8979 (2015).

    Article  Google Scholar 

  9. S. Kim, A. Konar, W.S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.B. Yoo, J.Y. Choi, Y.W. Jin, S.Y. Lee, D. Jena, W. Choi, and K. Kim, Nat. Commun. 3, 1011 (2012).

    Article  Google Scholar 

  10. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P.D. Ye, ACS Nano 8, 4033 (2014).

    Article  Google Scholar 

  11. ITRS Roadmap (2015). http://www.itrs2.net/itrs-news.html. Accessed 1 Sept 2015.

  12. L. Serge, Appl. Phys. Lett. 52, 501 (1988).

    Article  Google Scholar 

  13. T. Fang, A. Konar, H. Xing, and D. Jena, Appl. Phys. Lett. 91, 092109 (2007).

    Article  Google Scholar 

  14. N. Zibouche, A. Kuc, J. Musfeldt, and T. Heine, Ann. Phys. (2014). https://doi.org/10.1002/andp.201400137.

    Google Scholar 

  15. T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  Google Scholar 

  16. H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).

    Article  Google Scholar 

  17. D. Jariwala, V.K. Sangwant, L.J. Lauhon, T.J. Marks, and M.C. Hersam, ACS Nano 8, 1102 (2014).

    Article  Google Scholar 

  18. D.K. Schroeder, Semiconductor Material and Device Characterization, 3rd ed. (New York: Wiley-IEEE Press, 2015).

    Google Scholar 

  19. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (New York: Wiley, 2006).

    Book  Google Scholar 

  20. M. Khaledian, R. Ismail, M. Saeidmanesh, M.T. Ahmadi, and E. Akbari, J. Nanomater. (2014). https://doi.org/10.1155/2014/762143.

    Google Scholar 

  21. B. Radisavljevic and A. Kis, Nat. Mater. 12, 815 (2013).

    Article  Google Scholar 

  22. D.L. John, L.C. Castro, and D.L. Pulfrey, J. Appl. Phys. 96, 5180 (2004).

    Article  Google Scholar 

  23. R.F. Kazarinov and S. Luryi, Phys. Rev. B 25, 7626 (1982).

    Article  Google Scholar 

  24. L. Liu, S.B. Kumar, and J. Guo, IEEE Trans. Electron. Devices 58, 3042 (2011).

    Article  Google Scholar 

  25. M. Dragoman and D. Dragoman, 2D Nanoelectronics: Physics and Devices of Atomically Thin Materials, 1st ed. (Berlin: Springer, 2017).

    Book  Google Scholar 

  26. P. Avouris, T.F. Heinz, and T. Low, 2D Materials: Properties and Devices, 1st ed. (Cambridge: Cambridge University Press, 2017).

    Book  Google Scholar 

  27. F. Iacopi, J. Boeckl, and C. Jagadish, 2D Materials (Cambridge: Academic Press, 2016).

    Google Scholar 

  28. M. Houssa, A. Dimoulas, and A. Molle, 2D Materials for Nanoelectronics (Boca Raton: CRC Press, 2016).

    Book  Google Scholar 

  29. C.N.R. Rao and U.V. Waghmare, 2D Inorganic Materials Beyond Graphene (Singapore: World Scientific, 2017).

    Book  Google Scholar 

  30. P. Xia, X. Feng, R.J. Ng, S. Wang, D. Chi, C. Li, Z. He, X. Liu, and K.W. Ang, Sci. Rep. 7, 40669 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Bera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, M.K., Kharb, R., Sharma, N. et al. Influence of Quantum Capacitance on Charge Carrier Density Estimation in a Nanoscale Field-Effect Transistor with a Channel Based on a Monolayer WSe2 Two-Dimensional Crystal Semiconductor. J. Electron. Mater. 48, 3504–3513 (2019). https://doi.org/10.1007/s11664-019-07058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07058-0

Keywords

Navigation