Skip to main content
Log in

Thermoelectric Properties of Magnesium-Doped Tetrahedrite Cu12−xMgxSb4S13

  • Topical Collection: International Conference on Thermoelectrics 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tetrahedrites, naturally occurring sulfosalt minerals, have been shown to exhibit peak ZT values close to unity near 700 K due to the combination of semiconducting-like properties and extremely low lattice thermal conductivity. A wide range of elements can be substituted into tetrahedrites, each of them affecting the thermoelectric properties. Interestingly, all tetrahedrites reported to date contain exclusively d- and p-block elements of the periodic table. Here, we demonstrate that magnesium, an s-block element, can be introduced in Cu12Sb4S13. We successfully prepared a series of polycrystalline samples Cu12−xMgxSb4S13 with nominal compositions of x = 0.5, 1.0, 1.5. Powder x-ray diffraction and chemical mapping confirmed that approximately half of the Mg atoms were incorporated into the tetrahedrite unit cell, while the other half formed electrically insulating MgS precipitates. Thermoelectric properties, measured between 5 K and 673 K, show that the effect of Mg2+ is similar to that of other aliovalent elements substituting for either Cu or Sb. In particular, increasing the Mg content drives the system closer to a semiconducting behavior, leading to a concomitant increase in the thermopower and electrical resistivity and a decrease in the electronic part of the thermal conductivity. Because these two trends counterbalance each other, the overall effect of Mg on the ZT of Cu12Sb4S13 is found to be marginal with a peak ZT of 0.55 at 673 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Goldsmid, Thermoelectric Refrigeration (London: Temple University Press, 1964).

    Book  Google Scholar 

  2. D.M. Rowe, Thermoelectrics and Its Energy Harvesting (Boca Raton: CRC Press, 2012).

    Google Scholar 

  3. K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 051201 (2012).

    Article  Google Scholar 

  4. N.E. Johnson, J.R. Craig, and J.D. Rimstidt, Can. Mineral. 24, 385 (1986).

    Google Scholar 

  5. P. Levinsky, J.-B. Vaney, C. Candolfi, A. Dauscher, B. Lenoir, and J. Hejtmánek, J. Electron. Mater. 45, 1351 (2016).

    Article  Google Scholar 

  6. X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).

    Article  Google Scholar 

  7. R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Acta Mater. 100, 266 (2015).

    Article  Google Scholar 

  8. R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).

    Article  Google Scholar 

  9. K. Suekuni and T. Takabatake, APL Mater. 4, 104503 (2016).

    Article  Google Scholar 

  10. E. Lara-Curzio, A.F. May, O. Delaire, M.A. McGuire, X. Lu, C.-Y. Liu, E.D. Case, and D.T. Morelli, J. Appl. Phys. 115, 193515 (2014).

    Article  Google Scholar 

  11. Y. Bouyrie, C. Candolfi, S. Pailhès, M.M. Koza, B. Malaman, A. Dauscher, J. Tobola, O. Boisron, L. Saviot, and B. Lenoir, Phys. Chem. Chem. Phys. 17, 19751 (2015).

    Article  Google Scholar 

  12. W. Lai, Y. Wang, D.T. Morelli, and X. Lu, Adv. Funct. Mater. 25, 3648 (2015).

    Article  Google Scholar 

  13. X. Lu, D.T. Morelli, Y. Wang, W. Lai, Y. Xia, and V. Ozolins, Chem. Mater. 28, 1781 (2016).

    Article  Google Scholar 

  14. X. Lu, W. Yao, G. Wang, X. Zhou, D. Morelli, Y. Zhang, H. Chi, S. Hui, and C. Uher, RSC Adv. 7, 12719 (2017).

    Article  Google Scholar 

  15. H.I. Tanaka, K. Suekuni, K. Umeo, T. Nagasaki, H. Sato, G. Kutluk, E. Nishibori, H. Kasai, and T. Takabatake, J. Phys. Soc. Jpn. 85, 014703 (2016).

    Article  Google Scholar 

  16. P. Levinsky, C. Candolfi, A. Dauscher, J. Tobola, J. Hejtmánek, and B. Lenoir, Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/c9cp00213h.

  17. Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher, J. Tobola, and B. Lenoir, J. Mater. Chem. C 3, 10476 (2015).

    Article  Google Scholar 

  18. Y. Bouyrie, C. Candolfi, A. Dauscher, B. Malaman, and B. Lenoir, Chem. Mater. 27, 8354 (2015).

    Article  Google Scholar 

  19. D.S.P. Kumar, R. Chetty, O.E. Femi, K. Chattopadhyay, P. Malar, and R.C. Mallik, J. Electron. Mater. 46, 2616 (2017).

    Article  Google Scholar 

  20. K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).

    Article  Google Scholar 

  21. T. Barbier, P. Lemoine, S. Gascoin, O.I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, R.I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).

    Article  Google Scholar 

  22. D.S.P. Kumar, R. Chetty, P. Rogl, G. Rogl, E. Bauer, P. Malar, and R.C. Mallik, Intermetallics 78, 21 (2016).

    Article  Google Scholar 

  23. Y. Kosaka, K. Suekuni, K. Hashikuni, Y. Bouyrie, M. Ohta, and T. Takabatake, Phys. Chem. Chem. Phys. 19, 8874 (2017).

    Article  Google Scholar 

  24. X. Lu and D.T. Morelli, Phys. Chem. Chem. Phys. 15, 5762 (2013).

    Article  Google Scholar 

  25. X. Lu, D.T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).

    Article  Google Scholar 

  26. Y. Bouyrie, C. Candolfi, J.B. Vaney, A. Dauscher, and B. Lenoir, J. Electron. Mater. 45, 1601 (2016).

    Article  Google Scholar 

  27. Y. Bouyrie, S. Sassi, C. Candolfi, J.-B. Vaney, A. Dauscher, and B. Lenoir, Dalton Trans. 45, 7294 (2016).

    Article  Google Scholar 

  28. A.P. Gonçalves, E.B. Lopes, B. Villeroy, J. Monnier, C. Godart, and B. Lenoir, RSC Adv. 6, 102359 (2016).

    Article  Google Scholar 

  29. A.P. Gonçalves, E.B. Lopes, M.F. Montemor, J. Monnier, and B. Lenoir, J. Electron. Mater. 47, 2880 (2018).

    Article  Google Scholar 

  30. J. Rodriguez-Carvajal, Physica B 192, 55 (1993).

    Article  Google Scholar 

  31. E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou, R. Decourt, E. Guilmeau, S. Hébert, J. Hejtmanek, B. Lenoir, P. Masschelein, V. Ohorodniichuk, M. Pollet, S. Populoh, D. Ravot, O. Rouleau, and M. Soulier, Rev. Sci. Instrum. 86, 011301 (2015).

    Article  Google Scholar 

  32. P. Vaqueiro, G. Guélou, A. Kaltzoglou, R.I. Smith, T. Barbier, E. Guilmeau, and A.V. Powell, Chem. Mater. 29, 4080 (2017).

    Article  Google Scholar 

  33. F.-H. Sun, C.-F. Wu, Z. Li, Y. Pan, Asfandiyar, J. Dong, and J.-F. Li, RSC Adv. 7, 18909 (2017).

    Article  Google Scholar 

  34. R.D. Shannon, Acta Crystallogr. A 32, 75 (1976).

    Article  Google Scholar 

  35. E. Makovicky and S. Karup-Møller, Neues Jb. Miner. Abh. 179, 73 (2003).

    Google Scholar 

  36. K. Knížek, P. Levinský, and J. Hejtmánek, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-06960-x.

    Google Scholar 

  37. R. Chetty, D.S.P. Kumar, G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giester, and R.C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2014).

    Article  Google Scholar 

  38. D.I. Nasonova, V.Y. Verchenko, A.A. Tsirlin, and A.V. Shevelkov, Chem. Mater. 28, 6621 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed with the financial support of the Czech Science Foundation (project No. 18-12761S), the Operational Programme Research, Development and Education (Center of Advanced Applied Sciences project No. CZ.02.1.01/0.0/0.0/ 16_019/0000778) and the Grant Agency of the Czech Technical University in Prague (grant No. SGS16/245/OHK4/3T/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Levinsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levinsky, P., Candolfi, C., Dauscher, A. et al. Thermoelectric Properties of Magnesium-Doped Tetrahedrite Cu12−xMgxSb4S13. J. Electron. Mater. 48, 1926–1931 (2019). https://doi.org/10.1007/s11664-019-07032-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07032-w

Keywords

Navigation