Skip to main content
Log in

Synergistic Influence of Cu Intercalation on Electronic and Thermal Properties of n-Type CuxBi2Te2.7Se0.3 Polycrystalline Alloys

  • Topical Collection: International Conference on Thermoelectrics 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cu intercalation is known to be an effective strategy for improving the reproducibility of thermoelectric properties in n-type Bi2Te2.7Se0.3 alloys. In this study, the effect of Cu intercalation on the electronic and thermal properties of n-type Bi2Te2.7Se0.3 polycrystalline alloys was investigated systematically with respect to bipolar conduction and point defect phonon scattering by using the two-band model and Debye–Callaway model. The mobility and concentration of majority carriers (electrons) increased simultaneously while those of minority carriers (holes) decreased with increase in the amount of Cu. Thus, bipolar conduction, which has a detrimental effect on both electronic and thermal properties, was gradually reduced in the Cu-intercalated Bi2Te2.7Se0.3 samples. The reduction of the lattice thermal conductivity was analyzed quantitatively to show that Cu intercalation was also effective for enhancing point defect phonon scattering as interstitials. Thus, Cu intercalation in n-type Bi2Te2.7Se0.3 alloys enhanced the thermoelectric properties by controlling bipolar conduction and phonon scattering synergistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2014).

    Article  Google Scholar 

  2. H. Scherrer, S. Scherrer.Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC Press, 2006), p. 27-1.

    Google Scholar 

  3. H. Mun, K. Lee, S. Kim, J.Y. Kim, J. Lee, J.H. Lim, H. Park, J. Roh, and S. Kim, Materials 8, 959 (2015).

    Article  Google Scholar 

  4. H. Kim, J.K. Lee, S.D. Park, B. Ryu, J.E. Lee, B.S. Kim, B.K. Min, S.J. Joo, H.W. Lee, and Y.R. Cho, Electron. Mater. Lett. 12, 290 (2016).

    Article  Google Scholar 

  5. H.S. Kim, N.A. Heinz, Z.M. Gibbs, Y. Tang, S.D. Kang, and G.J. Snyder, Mater. Today 20, 452 (2017).

    Article  Google Scholar 

  6. S.V. Faleev and F. Leonard, Phys. Rev. B 77, 214304 (2008).

    Article  Google Scholar 

  7. S.I. Kim, S. Hwang, J.W. Roh, K. Ahn, D.H. Yeon, K.H. Lee, and S.W. Kim, J. Mater. Res. 27, 2449 (2012).

    Article  Google Scholar 

  8. C.M. Jaworski, V. Kulbachinskii, and J.P. Heremans, Phys. Rev. B 80, 233201 (2009).

    Article  Google Scholar 

  9. S.W. Hasan, H. Mun, S.I. Kim, J.Y. Cho, J.W. Roh, S. Yang, S.M. Choi, K.H. Lee, and S.W. Kim, J. Nanomater. 2013, 905389 (2013).

    Article  Google Scholar 

  10. R.S. Zhai, Y.H. Wu, T.J. Zhu, and X.B. Zhao, Rare Met. 37, 308 (2018).

    Article  Google Scholar 

  11. J. Cui, W. Xiu, and H. Xue, J. Appl. Phys. 101, 123713 (2007).

    Article  Google Scholar 

  12. I.H. Kim, S.M. Choi, W.S. Seo, and D.I. Cheong, Nanoscale Res. Lett. 7, 2 (2012).

    Article  Google Scholar 

  13. H.S. Kim, S.I. Kim, K.H. Lee, S.W. Kim, and G.J. Snyder, Phys. Status Solidi B 254, 1600103 (2017).

    Article  Google Scholar 

  14. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, and S.W. Kim, Science 348, 109 (2015).

    Article  Google Scholar 

  15. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 117, 334 (2005).

    Article  Google Scholar 

  16. W.S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, and Z. Ren, Adv. Energy Mater. 1, 577 (2011).

    Article  Google Scholar 

  17. Q. Lognone and F. Gascoin, J. Alloys Compd. 610, 1 (2014).

    Article  Google Scholar 

  18. A.F. May and G.J. Snyder, Materials, Preparation, and Characterization in Thermoelectric, ed. D.M. Rowe (Boca Raton: CRC Press, 2012), p. 11–1.

    Google Scholar 

  19. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  Google Scholar 

  20. K.H. Lee, S.M. Choi, S.I. Kim, J.W. Roh, D.J. Yang, W.H. Shin, H.J. Park, K. Lee, S. Hwang, J.H. Lee, H. Mun, and S.W. Kim, Curr. Appl. Phys. 15, 190 (2015).

    Article  Google Scholar 

  21. K.H. Lee, S.I. Kim, H. Mun, B. Ryu, S.M. Choi, H.J. Park, S. Hwang, and S.W. Kim, J. Mater. Chem. C 3, 10604 (2015).

    Article  Google Scholar 

  22. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).

    Article  Google Scholar 

  23. H.S. Kim, K.H. Lee, J. Yoo, J. Youn, J.W. Roh, S.I. Kim, and S.W. Kim, Materials 10, 763 (2017).

    Article  Google Scholar 

  24. H.S. Kim, K.H. Lee, J. Yoo, W.H. Shin, J.W. Roh, J.Y. Hwang, S.W. Kim, and S.I. Kim, J. Alloys Compd. 741, 869 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Samsung Research Funding and Incubation Center of Samsung Electronics under Project No. SRFC-MA1701-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-il Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Hj., Shin, W.H., Choo, Ss. et al. Synergistic Influence of Cu Intercalation on Electronic and Thermal Properties of n-Type CuxBi2Te2.7Se0.3 Polycrystalline Alloys. J. Electron. Mater. 48, 1951–1957 (2019). https://doi.org/10.1007/s11664-019-06973-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06973-6

Keywords

Navigation