Skip to main content
Log in

Effect of Composition on Thermoelectric Properties of As-Cast Materials: The Cu12−xCoxSb4S13−ySey Case

  • Topical Collection: International Conference on Thermoelectrics 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Samples with Cu12−xCoxSb4S13−ySey (0 ≤ x ≤ 2, 0 ≤ y ≤ 1) nominal compositions were prepared by melting the elements under vacuum, followed by slow cooling. The phases formed in this process were identified and characterized by powder x-ray diffraction and scanning electron microscopy observations, complemented with energy-dispersive spectroscopy. All samples have tetrahedrite as the major phase (> 78 vol.%). However, minority phases like skinnerite and chalcostibite are usually also observed, the number and volume of them increasing with the increase of cobalt content. Measurements of electrical resistivity and Seebeck coefficient showed that these materials can present large power factors, with the Cu11.5Co0.5Sb4S12Se sample having a room temperature value higher than 200 μW K−2 m−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Ioffe, Energetic Basis of Thermoelectrical Cells from Semiconductors (Moscow: Academy of Sciences of the USSR, 1950) (in Russian).

    Google Scholar 

  2. K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 051201 (2012).

    Article  Google Scholar 

  3. X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).

    Article  Google Scholar 

  4. R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Acta Mater. 100, 266 (2015).

    Article  Google Scholar 

  5. R. Chetty, P. Kumar, D.S.G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giesterg, and R.C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2015).

    Article  Google Scholar 

  6. X. Lu, D.T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).

    Article  Google Scholar 

  7. D.S.P. Kumar, R. Chetty, P. Rogl, G. Rogl, E. Bauer, P. Malar, and R.C. Mallik, Intermetallics 78, 21 (2016).

    Article  Google Scholar 

  8. T. Barbier, S. Rollin-Martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, and E. Guilmeau, J. Am. Ceram. Soc. 99, 51 (2016).

    Article  Google Scholar 

  9. Y. Bouyrie, S. Sassi, C. Candolfi, J.-B. Vaney, A. Dauscher, and B. Lenoir, Dalton Trans. 45, 7294 (2016).

    Article  Google Scholar 

  10. S. Battiston, C. Fanciulli, S. Fiameni, A. Famengo, S. Fasolin, and M. Fabrizio, J. Alloys Compd. 702, 75 (2017).

    Article  Google Scholar 

  11. S. Tippireddy, R. Chetty, M.H. Naik, M. Jain, K. Chattopadhyay, and R.C. Mallik, J. Phys. Chem. C 122, 8735 (2018).

    Article  Google Scholar 

  12. F.-H. Sun, J. Dong, S. Dey, Asfandiyar, C.-F. Wu, Y. Pan, H. Tang, and J.-F. Li, Sci. China Mater. 61, 1209 (2018).

    Article  Google Scholar 

  13. K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).

    Article  Google Scholar 

  14. R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).

    Article  Google Scholar 

  15. L. Xu and D.T. Morelli, Tetrahedrites: earth-abundant thermoelectric materials with intrinsically low thermal conductivity. Materials Aspect of Thermoelectricity, ed. C. Uher (Boca Raton: Taylor & Francis Group, 2016), p. 473.

    Google Scholar 

  16. C. Candolfi, Y. Bouyrie, S. Sassi, A. Dauscher, and B. Lenoir, Tetrahedrites: prospective novel thermoelectric materials. Thermoelectrics for Power Generation: A Look at Trends in the Technology, ed. S. Skipidarov and M. Nikitin (Rijeka: IntechOpen, 2016), p. 71.

    Google Scholar 

  17. D.J. James, X. Lu, D.T. Morelli, S.L. Brock, and A.C.S. Appl, Mater. Interfaces 7, 23623 (2015).

    Article  Google Scholar 

  18. A.P. Gonçalves, E.B. Lopes, J. Monnier, J. Bourgon, J.B. Vaney, A. Piarristeguy, A. Pradel, B. Lenoir, G. Delaizir, M.F.C. Pereira, E. Alleno, and C. Godart, J. Alloys Compd. 664, 209 (2016).

    Article  Google Scholar 

  19. A.P. Gonçalves, E.B. Lopes, B. Villeroy, J. Monnier, C. Godart, and B. Lenoir, RSC Adv. 6, 102359 (2016).

    Article  Google Scholar 

  20. G. Nolze and W. Kraus, Powder Cell for Windows (Version 2.3) (Berlin: Federal Institute for Materials Research and Testing, 1999).

    Google Scholar 

  21. T.J.B. Holland and S.A.T. Redfern, Mineral. Mag. 61, 65e77 (1997).

    Article  Google Scholar 

  22. J. Rodriguez-Carvajal, FULLPROF: a program for Rietveld refinement and pattern matching analyses, Abstracts of the Satellite Meeting on Powder Diffraction of the XVth Congress of the International Union of Crystallography, Toulouse, France, 1990, p. 127

  23. M. Almeida, S. Oostra, and L. Alcacer, Phys. Rev. B 30, 2839 (1984).

    Article  Google Scholar 

  24. R.P. Huebener, Phys. Rev. 135, A1281 (1964).

    Article  Google Scholar 

  25. X. Lu, D.T. Morelli, Y. Wang, W. Lai, Y. Xia, and V. Ozolins, Chem. Mater. 28, 1781 (2016).

    Article  Google Scholar 

  26. T. Barbier, P. Lemoine, S. Gascoin, O.I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, R.I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Fundação para a Ciência e Tecnologia (FCT), Portugal, through the contracts UID/Multi/04349/2013 and POCI-01-0145-FEDER-016674, and by the Project THERMOSS (M-ERA-NET2/0010/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Pereira Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, T.K.C., Domingues, G., Branco Lopes, E. et al. Effect of Composition on Thermoelectric Properties of As-Cast Materials: The Cu12−xCoxSb4S13−ySey Case. J. Electron. Mater. 48, 2028–2035 (2019). https://doi.org/10.1007/s11664-019-06956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06956-7

Keywords

Navigation