Skip to main content
Log in

Effect of Thermal Annealing on the Electrical Properties of Inverted Organic Solar Cells Based on PCDTBT: PC70BM Nanocomposites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Inverted organic solar cells based on poly[N-90 0-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)/[6,6]-phenyl-C61-butyric acid methyl ester [PCDTBT: PC70BM] bulk-heterojunction (BHJ) were elaborated. We have studied the effects of thermal annealing of PCDTBT: PC70BM active layer on electrical properties in dark condition of different elaborated inverted structures. The PCDTBT: PC70BM thin film was sandwiched between indium tin oxide (ITO)/ZnO front and PEDOT:PSS/aluminum (Al) back electrodes in which PEDOT:PSS was a hole transporting layer (HTL) and ZnO was an electron transport layer (ETL). The elaborated inverted device structure was ITO/ZnO/PCDTBT: PC70BM/PEDOT:PSS/Al. The active layer of organic devices were annealed at different temperatures: as cast, 70°C, 110°C, 150°C and 190°C. In this study, we aimed to elaborate inverted organic solar cells (OSCs) with better electrical parameters for photovoltaic applications using different temperatures. The electrical properties have been studied using JV measurement in dark condition. The different electrical parameters, such as the barrier height ϕb, the ideality factor n and the series resistance Rs, were calculated. The experimental result shows that these parameters depended strongly on the annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Søndergaard, M. Hösel, D. Angmo, Thue T. Larsen-Olsen, and F.C. Krebs, Mater. Today 15, 36 (2012).

    Article  Google Scholar 

  2. H.F. Dam, T.R. Andersen, M.V. Madsen, T.K. Mortensen, M.F. Pedersen, U. Nielsen, and F.C. Krebs, Sol. Energy Mater. Sol. C 140, 187 (2015).

    Article  Google Scholar 

  3. F.C. Krebs, T. Tromholt, and M. Jørgensen, Nanoscale 2, 873 (2010).

    Article  Google Scholar 

  4. N. Chandera, S. Singhb, and S. Sundar Kumar Iyer, Sol. Energy Mater. Sol. C 161, 407 (2017).

    Article  Google Scholar 

  5. E.A. Parlak, Sol. Energy Mater. Sol. C 100, 174 (2012).

    Article  Google Scholar 

  6. Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. McCulloch, C.-S. Ha and M. Ree, Nat. Mater. 5, 197 (2006).

  7. N. Blouin, A. Michaud, and M. Leclerc, Adv. Mater. 19, 2295 (2007).

    Article  Google Scholar 

  8. S.H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, and A.J. Heeger, Nat. Photon. 3, 297 (2009).

    Article  Google Scholar 

  9. Y. Sun, C.J. Takacs, S.R. Cowan, J.H. Seo, X. Gong, A. Roy, and A.J. Heeger, Adv. Mater. 23, 2226 (2011).

    Article  Google Scholar 

  10. S. Cho, J.H. Seo, S.H. Park, S. Beaupré, M. Leclerc, and A.J. Heeger, Adv. Mater. 22, 1253 (2010).

    Article  Google Scholar 

  11. C.W. Chu, H. Yang, W.J. Hou, J. Huang, G. Li, and Y. Yang, Appl. Phys. Lett. 92, 86 (2008).

    Google Scholar 

  12. Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, 135 (2010).

    Article  Google Scholar 

  13. Y.J. He, Y. Zhou, G.J. Zhao, J. Min, X. Guo, B. Zhang, M.J. Zhang, J. Zhang, Y.F. Li, F.L. Zhang, and O. Inganas, J Polym Sci Pol Chem. 48, 1822 (2010).

    Article  Google Scholar 

  14. O. Dhibi, A. Ltaief, and A. Bouazizi, Mater. Sci. Semicond. Proc. 25, 173 (2013).

    Article  Google Scholar 

  15. D.I. Kutsarov, E. New, F. Bausi, A.Z. Lemanczyk, F.A. Castro, and S.R.P. Silva, Data Brief 11, 44 (2017).

    Article  Google Scholar 

  16. K.D.G.I. Jayawardena, C.A. Rozanski, M.J. Mills, N.A. Beliatis, and S.R.P. Silva, Nanoscale 5, 8411 (2013).

    Article  Google Scholar 

  17. G. Chen, J. Seo, C. Yang, and P.N. Prasad, Chem. Soc. Rev. 42, 8304 (2013).

    Article  Google Scholar 

  18. E. Bundgaard and F.C. Krebs, Sol. Energy Mater. Sol. Cells 91, 954 (2007).

    Article  Google Scholar 

  19. A. Iwan and A. Chuchmała, Prog. Polym. Sci. 37, 1805 (2012).

    Article  Google Scholar 

  20. O. Synooka, K.R. Eberhardt, C.R. Singh, F. Hermann, G. Ecke, B. Ecker, Ev Hauff, G. Gobsch, and H. Hoppe, Adv. Energy Mater. 4, 1300981 (2013).

    Article  Google Scholar 

  21. F. Etzold, I.A. Howard, R. Mauer, M. Meister, T.D. Kim, K.S. Lee, N.S. Baek, and F. Laquai, J. Am. Chem. Soc. 133, 9469 (2011).

    Article  Google Scholar 

  22. M.P. de Jong, L.J. van Ijzendoorn, and M.J.A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000).

    Article  Google Scholar 

  23. K.W. Wong, H.L. Yip, Y. Luo, K.Y. Wong, W.M. Lau, K.H. Low, H.F. Chow, Z.Q. Gao, W.L. Yeung, and C.C. Chang, Appl. Phys. Lett. 80, 2788 (2002).

    Article  Google Scholar 

  24. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photon. 6, 591 (2012).

    Article  Google Scholar 

  25. Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, M. Zhang, and Y. Li, Adv. Mater. 26, 6635 (2016).

    Google Scholar 

  26. S. Chen, J.R. Manders, S.-W. Tsang, and F. So, J. Mater. Chem. 22, 24202 (2012).

    Article  Google Scholar 

  27. K. Zilberberg, J. Meyerb, and T. Riedl, J. Mater. Chem. C 1, 4796 (2013).

    Article  Google Scholar 

  28. P. Morvillo, R. Diana, G. Nenna, E. Bobeico, R. Ricciardi, and C. Minarini, Thin Solid Films 617, 126 (2016).

    Article  Google Scholar 

  29. M.N. Kamalasanan and S. Chandra, Thin Solid Films 288, 112 (1996).

    Article  Google Scholar 

  30. O. Dhibi, A. Ltaief, S. Zghal, and A. Bouazizi, Superlattice Microstruct. 60, 548 (2013).

    Article  Google Scholar 

  31. A. Iwana, M. Palewiczb, I. Tazbira, B. Boharewicza, R. Pietruszkac, M.L. Filapekd, J. Wojtkiewicze, B.S. Witkowskic, F. Granekb, and M. Godlewskic, Electrochim. Acta 191, 784 (2016).

    Article  Google Scholar 

  32. A. Mhamdi, A. Ltaief, and A. Bouazizi, J. Mol. Struct. 1145, 81 (2017).

    Article  Google Scholar 

  33. X. Zhu, F. Zhang, Q. An, H. Huang, Q. Sun, L. Li, F. Teng, and W. Tang, Sol. Energy Mater. Sol. C 132, 528 (2015).

    Article  Google Scholar 

  34. A. Gusain, V. Saxena, P. Veerender, P. Jha, S.P. Koiry, A.K. Chauhan, D.K. Aswal, and S.K. Gupta, AIP Conf. Proc. 1512, 776 (2013).

    Article  Google Scholar 

  35. W. Aloui, T. Adhikari, J.M. Nunzi, and A. Bouazizi, Mater. Sci. Semicond. Proc. 39, 575 (2015).

    Article  Google Scholar 

  36. K. Burak, A. Hassan, and W. Cranton, J. Mater. Sci. Mater. El 27, 7038 (2016).

    Article  Google Scholar 

  37. A. Keffous, M. Siad, S. Mamma, Y. Belkacem, C. Lakhdar Chaouch, H. Menari, A. Dahmani, and W. Chergui, Appl. Surf. Sci. 218, 337 (2003).

    Article  Google Scholar 

  38. A. Walid, A. Ltaief, and A. Bouazizi, Mater. Sci. Semicond. Proc. 27, 170 (2014).

    Article  Google Scholar 

  39. S. Sanyal and P. Chattopadhyay, Solid-State Electron. 45, 315 (2001).

    Article  Google Scholar 

  40. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  41. S. Besbes, A. Ltaief, K. Reybier, L. Ponsonnet, N. Jaffrezic, J. Davenas, and H. Ben Ouada, Synthetic Met. 138, 197 (2003).

    Article  Google Scholar 

  42. Rashmi, A.K. Kapoor, S. Annapoorni, and V. Kumar, Semicond. Sci. Tech. 23, 035008 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asya Mhamdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhamdi, A., Ben Slama Sweii, F. & Bouazizi, A. Effect of Thermal Annealing on the Electrical Properties of Inverted Organic Solar Cells Based on PCDTBT: PC70BM Nanocomposites. J. Electron. Mater. 48, 352–357 (2019). https://doi.org/10.1007/s11664-018-6696-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6696-5

Keywords

Navigation