Skip to main content
Log in

Processing and Property Characterization of Zn Acceptor/Sn Donor Codoped Gallium Nitride Films Prepared by Reactive Sputtering with a Cermet Target

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Codoping zinc (Zn) and tin (Sn) in forming quartenary acceptor/donor codoped gallium nitride thin films using reactive sputtering technique under a cermet target is presented in this study. The purpose of codoping in GaN is to extend its electrical properties to a wider range through defect engineering. There are few reports on the Zn/Sn codoped GaN thin films by chemical or physical processes at this stage. To develop the acceptor/donor codoped GaN, this work was focused on the influence of process parameters of deposition temperatures and RF sputter power on the film properties in order to explore the defect behaviors. RF sputter power showed a strong effect on the performance of p-type Zn/Sn-GaN films, with the hole concentration in the range of 9.5 × 1012–5.1 × 1017 cm−3, electrical conductivity of 1.5 × 10−6–1.1 S cm−1, and optical band gap of 2.92–3.22 eV. On the other hand, the effect of deposition temperature on properties was not noticeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura, T. Mukai, and M. Senoh, Japan J. Appl. Phys. 31, 2883 (1992).

    Article  CAS  Google Scholar 

  2. S.I. Molina, A.M. Sánchez, F.J. Pacheco, R. García, M.A. Sánchez-García, F.J. Sánchez, and E. Calleja, Appl. Phys. Lett. 74, 3362 (1999).

    Article  CAS  Google Scholar 

  3. A. Shikanaia, H. Fukahori, Y. Kawakami, K. Hazu, T. Sota, T. Mitani, T. Mukai, and S. Fujita, Physica Status Solidi (b) 235, 26 (2003).

    Article  Google Scholar 

  4. C.W. Ting, C.P. Thao, and D.H. Kuo, Mater. Sci. Semicond. Proc. 59, 50 (2017).

    Article  CAS  Google Scholar 

  5. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).

    Article  CAS  Google Scholar 

  6. J.K. Sheu, C.J. Pan, G.C. Chi, C.H. Kuo, L.W. Wu, C.H. Chen, S.J. Chang, and Y.K. Su, IEEE Photo. Technol. Lett. 14, 450 (2002).

    Article  Google Scholar 

  7. M.A. Reshchikov, M. Foussekis, J.D. McNamara, A. Behrends, A. Bakin, and A. Waag, J. Appl. Phys. 111, 073106 (2012).

    Article  Google Scholar 

  8. K.S. Kim, G.M. Yang, and H.J. Lee, Solid State Electron. 43, 1807 (1999).

    Article  CAS  Google Scholar 

  9. A.K. Singh, K.P. O’Donnell, P.R. Edwards, K. Lorenz, J.H. Leach, and M. Boćkowski, J. Phys. D Appl. Phys. 51, 065106 (2018).

    Article  Google Scholar 

  10. C.P. Thao, D.-H. Kuo, and D.J. Jan, Mater. Sci. Semicond. Proc. 82, 126 (2018).

    Article  CAS  Google Scholar 

  11. D.-H. Kuo and Y.-T. Liu, J. Mater. Sci. 53, 9099 (2018).

    Article  CAS  Google Scholar 

  12. H. Katayama-Yoshida, R. Kato, and T. Yamamoto, J. Cryst. Growth 231, 428 (2001).

    Article  CAS  Google Scholar 

  13. S.S. Kocha, M.W. Peterson, D.J. Arent, J.M. Redwing, M.A. Tischler, and J.A. Turner, J. Electrochem. Soc. 142, L238 (1995).

    Article  CAS  Google Scholar 

  14. I.M. Huygens, K. Strubbe, and W.P. Gomes, J. Electrochem. Soc. 147, 1797 (2000).

    Article  CAS  Google Scholar 

  15. K. Maeda, K. Teramura, N. Saito, Y. Inoue, H. Kobayashi, and K. Domen, Pure Appl. Chem. 78, 2267 (2006).

    Article  CAS  Google Scholar 

  16. K. Maeda, K. Teramura, and K. Domen, J. Catal. 254, 198 (2008).

    Article  CAS  Google Scholar 

  17. C.C. Li and D.-H. Kuo, J. Mater. Sci.-Mater. Electron. 25, 1404 (2014).

    Article  CAS  Google Scholar 

  18. C.C. Li and D.-H. Kuo, J. Mater. Sci.-Mater. Electron. 25, 1942 (2014).

    Article  CAS  Google Scholar 

  19. T.T.A. Tuan, D.-H. Kuo, C.C. Chen, and W.C. Yen, J. Mater. Sci.-Mater. Electron. 25, 3264 (2014).

    Article  CAS  Google Scholar 

  20. D.-H. Kuo, T.T.A. Tran, C.C. Chen, and W.C. Yen, Mater. Sci. Engi. B 193, 13 (2015).

    Article  CAS  Google Scholar 

  21. T.T.A. Tuan, D.-H. Kuo, A.D. Saragih, and G.-Z. Li, Mater. Sci. Eng., B 222, 18 (2017).

    Article  CAS  Google Scholar 

  22. C.P. Thao and D.-H. Kuo, Mater. Sci. Semicond. Proc. 74, 336 (2018).

    Article  CAS  Google Scholar 

  23. K. Lin and D.H. Kuo, J Mater Sci-Mater Electron 28, 43 (2017).

    Article  CAS  Google Scholar 

  24. J. Neugebauer and C.G. Van de Walle, J. Appl. Phys. 85, 3003 (1999).

    Article  CAS  Google Scholar 

  25. J.L. Lyons, A. Janotti, and C.G. Van de Walle, J. Appl. Phys. 52, 08JJ04 (2013).

    Article  Google Scholar 

  26. D.O. Demchenko and M.A. Reshchikov, Physical Review B 88, 115204 (2013).

    Article  Google Scholar 

  27. G. Sanon, R. Rup, and A. Mansingh, Phys. Rev. B 44, 5672 (1991).

    Article  CAS  Google Scholar 

  28. I. Hamberg and C.G. Granqvist, Phys. Rev. B 30, 3240 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. MOST 104-2221-E-011-169-MY3 and MOST 106-3111-Y-042A-093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hau Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, DH., Liu, YT. & Jan, DJ. Processing and Property Characterization of Zn Acceptor/Sn Donor Codoped Gallium Nitride Films Prepared by Reactive Sputtering with a Cermet Target. J. Electron. Mater. 47, 7420–7428 (2018). https://doi.org/10.1007/s11664-018-6682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6682-y

Keywords

Navigation