Skip to main content
Log in

Electronic and Structural Properties of Semiconductor GaAs Nanotubes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic and structural properties of single-walled gallium arsenide nanotubes (GaAsNTs) with diameter in the range of 5 Å to 50 Å have been investigated based on density functional theory. The variation of the bandgap, bond length, lattice constant, density of states, buckling separation, and binding energy of the GaAs nanotubes was investigated as a function of their diameter. The results reveal a correlation between the buckling and bandgap, with lower bandgap corresponding to higher buckling, while decreasing the tube diameter increases the buckling separation. It is revealed that, for both zigzag and armchair GaAs nanotubes, the value of the bandgap increases with the nanotube diameter. Binding energy calculations show that small-diameter GaAsNTs are more stable than those with larger diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Sze and J.C. Irvin, Solid State Electron. 11, 599 (1968).

    Article  CAS  Google Scholar 

  2. P.M. Smith, M. Inoue, and J. Frey, Appl. Phys. Lett. 37, 797 (1980).

    Article  CAS  Google Scholar 

  3. J.S. Blakemore, J. Appl. Phys. 53, R123 (1982).

    Article  CAS  Google Scholar 

  4. S.J. Pearton, C.R. Abernathy, G.T. Thaler, R.M. Frazier, D.P. Norton, F. Ren, Y.D. Park, J.M. Zavada, I.A. Buyanova, and W.M. Chen, J. Phys. Condens. Matter 16, 209 (2004).

    Article  Google Scholar 

  5. S.J. Moss and A. Ledwith, The Chemistry of the Semiconductor Industry (Berlin: Springer, 1987).

    Google Scholar 

  6. B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials (Hoboken: IEEE Magnetics Society, 2009).

    Google Scholar 

  7. T. Movlarooy, J. Magn. Magn. Mater. 441, 139 (2017).

    Article  CAS  Google Scholar 

  8. T. Movlarooy, S.M. Hosseini, A. Kompany, and N. Shahtahmasebi, Comput. Mater. Sci 49, 450 (2010).

    Article  CAS  Google Scholar 

  9. T. Movlarooy, S.M. Hosseini, A. Kompany, and N. Shahtahmasebi, Phys. Status Solidi B 247, 1814 (2010).

    Article  CAS  Google Scholar 

  10. T. Movlarooy, S.M. Hosseini, A. Kompany, and N. Shahtahmasebi, Int. J. Nanosci. 10, 587 (2011).

    Article  CAS  Google Scholar 

  11. T. Movlarooy, Chin. Phys. Lett. 30, 077301 (2013).

    Article  Google Scholar 

  12. N. Ghajari, A. Kompany, T. Movlarooy, F. Roozban, and M. Majidiyan, J. Magn. Magn. Mater. 325, 42 (2013).

    Article  Google Scholar 

  13. T. Movlarooy, Mater. Res. Express 5, 035032 (2018).

    Article  Google Scholar 

  14. T. Movlarooy, Chin. Phys. B 23, 066201 (2014).

    Article  Google Scholar 

  15. C. Ghosh, S. Pal, B. Goswami, and P. Sarkar, J. Phys. Chem. C 111, 12284 (2007).

    Article  CAS  Google Scholar 

  16. W.F. Sun, X. Wang, Z. Sun, and Q.Q. Lei, Superlattices Microstruct 60, 29 (2013).

    Article  CAS  Google Scholar 

  17. L. Pengfei, C. Huawei, Z. Xianlong, Y. Zhongyuan, C. Ningning, G. Tao, and W. Shumin, Physica E 52, 34 (2013).

    Article  Google Scholar 

  18. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002).

    Article  CAS  Google Scholar 

  19. P. Blaha, D. Singh, P.I. Sorantin, and K. Schwarz, Phys. Rev. B 46, 1321 (1992).

    Article  CAS  Google Scholar 

  20. C. Fiolhais, F. Nogueira, and M. Margues, A Primer in Density Functional Therory (Berlin: Springer, 2003).

    Book  Google Scholar 

  21. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  22. Y. Guo, X. Yan, and Y. Yang, Phys. Lett. A 373, 367 (2009).

    Article  CAS  Google Scholar 

  23. H.J. Xiang, J. Yang, J.G. Hou, and Q. Zhu, Phys. Rev. B 68, 035427 (2003).

    Article  Google Scholar 

  24. E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).

    Article  CAS  Google Scholar 

  25. S. Pal, B. Goswami, and P. Sarkar, J. Phys. Chem. C 111, 1556 (2007).

    Article  CAS  Google Scholar 

  26. M.T. Hussein, M.A. Abdulsattar, and H.A. Hameed. Int. J. Adv. Ind. Eng. (2014).

  27. L.B. Shi and H.K. Yuan, Adv. Mater. Res. 347–353, 3489 (2012).

    Google Scholar 

  28. A. Srivastava, S.K. Jain, and P.S. Khare, J. Mol. Model. 20, 2171 (2014).

    Article  Google Scholar 

  29. D. Zhang and R.Q. Zhang, Chem. Phys. Lett. 371, 426 (2003).

    Article  CAS  Google Scholar 

  30. X. Blase, A. Rubio, S.G. Louie, and M.L. Cohen, Europhys. Lett. 28, 335 (1994).

    Article  CAS  Google Scholar 

  31. R.A. Evarestov, YuF Zhukovskii, A.V. Bandura, and S. Piskunov, J. Phys. Chem. C 114, 21061 (2010).

    Article  CAS  Google Scholar 

  32. S.M. Lee, Y.G. Lee, J. Elsner, D. Porezag, and T. Fraunheim, Phys. Rev. B 60, 7788 (1999).

    Article  CAS  Google Scholar 

  33. S.K. Jain, A. Srivastava, N. Tyagi, P.S. Khare, and P. Swarup, Quantum Matter 4, 139 (2015).

    Article  Google Scholar 

  34. D. Dey and D. De, Int. J. Nano Dimens 9, 134 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Movlarooy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, R., Movlarooy, T. Electronic and Structural Properties of Semiconductor GaAs Nanotubes. J. Electron. Mater. 47, 7358–7364 (2018). https://doi.org/10.1007/s11664-018-6675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6675-x

Keywords

Navigation