Skip to main content
Log in

Topology Optimization of Segmented Thermoelectric Generators

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric (TE) power output, \(f_P\), and conversion efficiency, \(f_{\eta }\), for segmented thermoelectric generators (TEGs) have been optimized by spatially distributing two TE materials (BiSbTe and Skutterudite) using a numerical gradient-based topology optimization approach. The material properties are temperature-dependent, and the segmented TEGs are designed for various heat transfer rates at the hot and cold reservoirs. The topology-optimized design solutions are characterized by spike-shaped features which enable the designs to operate in an intermediate state between the material phases. Important design parameters, such as the device dimensions, objective functions and heat transfer rates, are identified, investigated and discussed. Comparing the topology optimization approach with the classical segmentation approach, the performance improvements of \(f_P\) and \(f_{\eta }\) design problems depend on the heat transfer rates at the hot and the cold reservoirs, the objective function and the device dimensions. The largest performance improvements for the problems investigated are \(\approx \) 6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, 1st edn (CRC Press, 2005).

  2. C.B. Vining, Nat. Mater. (2009). https://doi.org/10.1038/nmat2361.

    Article  Google Scholar 

  3. G.J. Snyder and T.S. Ursell, Phys. Rev. Lett. 91, 148301 (2003). https://doi.org/10.1103/PhysRevLett.91.148301.

    Article  Google Scholar 

  4. R. Bjørk, J. Electron. Mater. (2015). https://doi.org/10.1007/s11664-015-3731-7.

    Article  Google Scholar 

  5. M.P. Bendsøe and N. Kikuchi, Comput. Method Appl. Mech. (1988). https://doi.org/10.1016/0045-7825(88)90086-2.

    Article  Google Scholar 

  6. M. Bendsøe and O. Sigmund, Topology Optimization Theory, Methods, and Applications, 2nd edn (Springer, 2003).

  7. E.E. Antonova and D.C. Looman, Int. Conf. Thermoelectr. (2005). https://doi.org/10.1109/ICT.2005.1519922.

    Article  Google Scholar 

  8. C. Lundgaard and O. Sigmund, Struct. Multidiscip. Optim. (2018). https://doi.org/10.1007/s00158-018-1919-1.

    Article  Google Scholar 

  9. Z. Bian and A. Shakouri, Int. Conf. Thermoelectric. (2006). https://doi.org/10.1109/ICT.2006.331365.

    Article  Google Scholar 

  10. Y.C. Gerstenmaier and G. Wachutka, J. Appl. Phys. (2017). https://doi.org/10.1063/1.4994642.

    Article  Google Scholar 

  11. Z. Tian, S. Lee, and G. Chen, Ann. Rev. Heat Transfer (2014). 2014006932. https://doi.org/10.1615/AnnualRevHeatTransfer.2014006932.

    Article  Google Scholar 

  12. C. Lundgaard and O. Sigmund, Appl. Energy (Accepted for publication) (2018).

  13. A. Rezania, K. Yazawa, L.A. Rosendahl, and A. Shakouri, Int. J. Therm. Sci. (2013). https://doi.org/10.1016/j.ijthermalsci.2013.05.002.

    Article  Google Scholar 

  14. N. Wojtas and C. Hierold, Int. J. Therm. Sci. (2013). https://doi.org/10.1109/Transducers.2013.6627032.

  15. M.M. Barry, K.A. Agbim, and M.A. Chyu, J. Electron. Mater. 44(6), 1394–1401. https://doi.org/10.1007/s11664-014-3380-2.

    Article  CAS  Google Scholar 

  16. S. Bélanger and L. Gosselin, Int. J. Energy Res. (2011). https://doi.org/10.1002/er.1820.

    Article  Google Scholar 

  17. A. Martínez, J.G. Vian, D. Astrain, A. Rodríguez, and I. Berrio, J. Electron. Mater. (2010). https://doi.org/10.1007/s11664-010-1291-4.

    Article  Google Scholar 

  18. Z. Zhang, L.N. Chen, Z.J. Chen, G.Q. Xiao, and Z.J. Liu, J. Electron. Mater. (2015). https://doi.org/10.1007/s11664-015-3754-0.

    Article  Google Scholar 

  19. C. Favarel, J.-P. Bédécarrats, T. Kousksou, and D. Champier, Energy Convers. Manag. (2016). https://doi.org/10.13044/j.sdewes.2015.03.0020.

    Article  Google Scholar 

  20. X. Gou, H. Xiao, and S. Yang, Appl. Energy (2010). https://doi.org/10.1016/j.apenergy.2010.02.013.

    Article  Google Scholar 

  21. J. Esarte, G. Min, and D.M. Rowe, J. Power Sources https://doi.org/10.1016/S0378-7753(00)00566-8 (2001).

    Article  Google Scholar 

  22. R.O. Suzuki, Y. Sasaki, T. Fujisaka, and M. Chen, J. Electron. Mater. (2012). https://doi.org/10.1007/s11664-012-2074-x.

    Article  Google Scholar 

  23. J. Yu and H. Zhao, J. Power Sources (2007). https://doi.org/10.1016/j.jpowsour.2007.07.045.

    Article  Google Scholar 

  24. R. Bjørk, A. Sarhadi, N. Pryds, N. Lindeburg, and P. Viereck. Energy Convers. Manag. (2016). https://doi.org/10.1016/j.enconman.2016.04.042.

    Article  Google Scholar 

  25. A. Sarhadi, R. Bjørk, N. Lindeburg, P. Viereck, and N. Pryds, Energy Convers. Manag. (2016). https://doi.org/10.1016/j.enconman.2016.04.052.

    Article  Google Scholar 

  26. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. Ren, Nano Lett. (2008). https://doi.org/10.1021/nl8009928.

    Article  Google Scholar 

  27. A. Muto, J. Yang, B. Poudel, Z. Ren, and G. Chen, Adv. Energy Mater. (2013). https://doi.org/10.1002/aenm.201200503.

    Article  Google Scholar 

  28. T.S. Ursell and G.N. Snyder, Int. Conf. Thermoelectric. (2002). https://doi.org/10.1109/ICT.2002.1190349.

    Article  Google Scholar 

  29. P.H. Ngan, D.V. Christensen, G.J. Snyder, L.T. Hung, S. Linderoth, N. Van Nong, and N. Pryds, Phys. Status Solidi A (2014). https://doi.org/10.1002/pssa.201330155.

    Article  Google Scholar 

  30. S.P. Yushanov, L.T. Gritter, J.S. Crompton, and K.C. Koppenhoefer, in Proceedings of the 2011 COMSOL Conference, Boston, USA (2011).

  31. R.D. Cook, D.S. Malkus, M.E. Plesha, and R.J. Witt, Concepts and Applications of Finite Element Analysis, 4th edn (Wiley, New York, 2007).

  32. P. Michaleris, D.A. Tortorelli, and C.A. Vidal. Int. J. Numer. Methods Eng. (1994). https://doi.org/10.1002/nme.1620371408.

    Article  Google Scholar 

  33. J.K. Guest and J.H. Prévost, Int. J. Numer. Methods Eng. (2006). https://doi.org/10.1002/nme.1560.

    Article  Google Scholar 

  34. O. Sigmund, Struct. Multidiscip. Optim. (2007). https://doi.org/10.1007/s00158-006-0087-x.

    Article  Google Scholar 

  35. A. Sakai, T. Kanno, K. Takahashi, H. Tamaki, H. Kusada, Y. Yamada, and H. Abe, Sci. Rep. UK (2014). https://doi.org/10.1038/srep06089.

    Article  Google Scholar 

  36. W. Seifert and V. Pluschke, Phys. Status Solidi A (2014). https://doi.org/10.1002/pssa.201330392.

    Article  Google Scholar 

  37. Y. Yang, S.H. Xie, F.Y. Ma, and C.H. Lei, J. Appl. Phys. (2012). https://doi.org/10.1063/1.3674279.

    Article  Google Scholar 

  38. W. Seifert, E.Müller, and S. Walczak, Int. Conf. Thermoelectric. (2006). https://doi.org/10.1109/ICT.2006.331241.

    Article  Google Scholar 

  39. Y.C. Gerstenmaier and G. Wachutka, Phys. Rev. E (2012). https://doi.org/10.1103/PhysRevE.86.056703.

    Article  Google Scholar 

  40. D.M. De Leon, J. Alexandersen, J.S. Jun, and O. Sigmund, Struct. Multidiscip. Optim. (2015). https://doi.org/10.1007/s00158-015-1279-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lundgaard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lundgaard, C., Sigmund, O. & Bjørk, R. Topology Optimization of Segmented Thermoelectric Generators. J. Electron. Mater. 47, 6959–6971 (2018). https://doi.org/10.1007/s11664-018-6606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6606-x

Keywords

Navigation