Skip to main content
Log in

A Phenomenological Model of the Screen-Printed, Silver Paste Contact to Si Substrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A phenomenological model of screen-printed silver contact to an n-doped, p-type multi-crystalline Si wafer, based on extensive electrical, morphological, and compositional evaluations, has been developed. Rapid and quasi steady state heating configurations over broad (150–925°C) temperature ranges were investigated. Conventional rapid thermal annealing (RTA) with a conveyor belt was used for a rapid and custom-designed three-zone quartz tube furnace (QTF) for slow temperature variations. Lowest contact resistivity at 0.15 mΩ cm2 was observed in RTA horizontal configuration which was 25 times smaller than the same in QTF. RTA contact resistivity measurements revealed a minimum at 870°C while linear reduction in contact resistance was observed for the QTF configuration. The silver/silicon contact was based on three physical mechanisms: (1) migration of Si into glass and silver regions of the paste, (2) intermixing of silver and silicon (nano- and micrometer scale), and (3) epitaxial growth of silver/silicon crystallites. Experimental evidence of silicon migration was supported through extensive phosphorous concentration measurements from silicon and silver/silicon regions. The glass film with a colloidal distribution of randomly-distributed silver/silicon crystallites leads to lower contact resistance. Rapid temperature fluctuations facilitate development of Ag/Si crystallites. The higher contact resistance in quasi steady state thermal configuration was attributed to glass films with reduced density of Ag/Si crystallites. This disadvantage may be eliminated through post-contact, forming gas annealing at lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Shanmugam, J. Cunnusamy, A. Khanna, P.K. Basu, Y. Zhang, C. Chen, A.F. Stassen, M.B. Boreland, T. Mueller, B. Hoex, and A.G. Aberle, IEEE J. Photovoltaics 4, 168 (2014).

    Article  Google Scholar 

  2. F.J. Bottari, W. Montanez-Ortiz, D.C. Wong, P.J. Richter, F.C. Dimock, M. Bowers, and T. Bao, in Proceedings of the 35th IEEE Photovolt. Spec. Conf., Honolulu, HI, June 20–25, 2010, pp. 1315–1317.

  3. K.D. Shetty, M.B. Boreland, V. Shanmugam, J. Cunnusamy, C.K. Wu, S. Iggo, and H. Antoniadis, Energy Procedia 33, 70 (2013).

    Article  CAS  Google Scholar 

  4. P. Doshi, J. Mejia, K. Tatel, S. Kamra, A. Rohatgi, S. Narayanian, R. Singh, and S. Court, in Proceedings of the 25th IEEE Photovolt. Spec. Conf., Washington, DC, May 13-17, 1996, pp. 5–8.

  5. A. Ebong, M. Hilali, V. Upadhyaya, B. Rounsaville, I. Ebong, and A. Rohatgi, in Proceedings of the 31st IEEE Photovolt. Spec. Conf, Lake Buena Vista, FL, Jan. 3–7, 2005, pp. 1173–1176.

  6. S. Wu, W. Wang, L. Li, D. Yu, L. Huang, and W. Liu, RSC Adv., 24384 (2014).

    Article  CAS  Google Scholar 

  7. G. Schubert, F. Huster, and P. Fath, Sol. Energy Mater. Sol. Cells 90, 3399 (2006).

    Article  CAS  Google Scholar 

  8. C. Ballif, D. M. Huijic, A. Hessler-Wyser, and G. Willeke, in Proceedings of the 29th IEEE Photovolt. Spec. Conf., New Orleans, LA, May 19–24, 2002, pp. 360–363.

  9. M.M. Hilali, M.M. Al-Jassim, B. To, H. Moutinho, A. Rohatgi, and S. Asher, J. Electrochem. Soc. 152, G742 (2005).

    Article  CAS  Google Scholar 

  10. D. M. Huljic, D. Biro, R. Preu, C.C. Castillo, and R. Ludemann, in Proceedings of the 28th IEEE Photovolt. Spec. Conf., Anchorage, AK, Sept. 15–22, 2000, pp. 379–382.

  11. K. Kim, S.K. Dhungel, U. Gangopadhyay, J. Yoo, C.W. Seok, and J. Yi, Thin Solid Films 511–512, 228 (2006).

    Article  Google Scholar 

  12. G.K. Reeves and H.B. Harrison, IEEE Electron Device Lett. 3, 111 (1982).

    Article  Google Scholar 

  13. E.G. Woelk, H. Krautle, and H. Beneking, IEEE Trans. Electron Devices 33, 19 (1986).

    Article  Google Scholar 

  14. P.N. Vinod, J. Mater. Sci.: Mater. Electron. 22, 1248 (2011).

    CAS  Google Scholar 

  15. R. Hoenig, D. Voessing, F. Clement, D. Biro, R. Preu, and J. Wilde, Energy Procedia 38, 737 (2013).

    Article  CAS  Google Scholar 

  16. A. Ebong and N. Chen, in Proceedings of the 9th Internat. Conf. on High Capacity Optical Networks and Emerging/Enabling Technologies, Istanbul, Dec. 12-14, 2012, pp. 102–109.

  17. D.K. Schroder, Semiconductor Material and Device Characterization (New York: Wiley, 2006), p. 140.

    Google Scholar 

  18. D. K. Schroder and D. L. Meier, IEEE Trans. Electron Devices, ED-31, 637 (1984).

    Article  Google Scholar 

  19. A. Goetzberger, J. Knobloch, and B. Voss, Crystalline Silicon Solar Cells (New York: Wiley, 1998), p. 110.

    Google Scholar 

  20. H.H. Berger, J. Electrochem. Soc. 119, 507 (1972).

    Article  CAS  Google Scholar 

  21. C.P. Winsor, Proc. Natl. Acad. Sci. 18, 1 (1932).

    Article  CAS  Google Scholar 

  22. G.C. Cheek, R.P. Mertens, R. Van Overstraeten, and L. Frisson, IEEE Trans. Electron Devices 31, 602 (1984).

    Article  Google Scholar 

  23. M. Prudenziati, L. Moro, B. Morten, F. Sirotti, and L. Sardi, Act. Passiv. Electron. Compon. 13, 133 (1989).

    Article  Google Scholar 

  24. B. Thuillier, J.P. Boyeaux, A. Kaminski, and A. Laugier, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 102, 58 (2003).

  25. C. Ballif, D.M. Huljić, G. Willeke, and A. Hessler-Wyser, Appl. Phys. Lett., 82, 1878 (2003).

    Article  CAS  Google Scholar 

  26. M.M. Hilali, K. Nakayashiki, C. Khadilkar, R.C. Reedy, A. Rohatgi, A. Shaikh, S. Kim, and S. Sridharan, J. Electrochem. Soc. 153, A5 (2006).

    Article  CAS  Google Scholar 

  27. G. Schubert, Ph.D. thesis, University of Konstanz, Konstanz, Germany (2006).

  28. B. Sopori, V. Mehta, P. Rupnowski, J. Appel, M. Romero, H. Moutinho, D. Domine, B. To, R. Reedy, A. Shaikh, N. Merchant, C. Khadilkar, D. Carlson, and M. Bennet, NREL Proc., 100 (2007).

  29. C.H. Lin, S.Y. Tsai, S.P. Hsu, and M.H. Hsieh, Sol. Energy Mater. Sol. Cells 92, 1011 (2008).

    Article  CAS  Google Scholar 

  30. Z.G. Li, L. Liang, and L.K. Cheng, J. Appl. Phys. 105, 19 (2009).

    Google Scholar 

  31. K. Hong, S. Cho, J.S. You, J. Jeong, S. Bea, and J. Huh, Sol. Energy Mater. Sol. Cells 93, 898 (2009).

    Article  CAS  Google Scholar 

  32. S. Kontermann, M. Hörteis, M. Kasemann, A. Grohe, R. Preu, E. Pink, and T. Trupke, Sol. Energy Mater. Sol. Cells 93, 1630 (2009).

    Article  CAS  Google Scholar 

  33. M.-I. Jeong, S.-E. Park, D.-H. Kim, J.-S. Lee, Y.-C. Park, K.-S. Ahn, and C.-J. Choi, J. Electrochem. Soc. 157, H934 (2010).

    Article  CAS  Google Scholar 

  34. E. Cabrera, S. Olibet, J. Glatz-Reichenbach, R. Kopecek, D. Reinke, and G. Schubert, J. Appl. Phys. 110, 114511 (2011).

    Article  Google Scholar 

  35. C.H. Lin, S.P. Hsu, and W.C. Hsu, Silicon Wafer-Based Technol., 93 (2011).

  36. Z.G. Li, L. Liang, A.S. Ionkin, B.M. Fish, M.E. Lewittes, L.K. Cheng, and K.R. Mikeska, J. Appl. Phys. 110, 074304 (2011).

    Article  Google Scholar 

  37. M. Eberstein, H. Falk-Windisch, M. Peschel, J. Schilm, T. Seuthe, M. Wenzel, C. Kretzschmar, and U. Partsch, Energy Procedia 27, 522 (2012).

    Article  CAS  Google Scholar 

  38. S. Fritz, S. Riegel, A. Herguth, M. König, M. Hörteis, and G. Hahn, Energy Procedia 67, 43 (2015).

    Article  CAS  Google Scholar 

  39. W. Wu, C. Chan, M. Lewittes, L. Zhang, and K. Roelofs, Energy Procedia 92, 984 (2016).

    Article  CAS  Google Scholar 

  40. J.D. Fields, M.I. Ahmad, V.L. Pool, J. Yu, D.G. Van Campen, P.A. Parilla, M.F. Toney, and M.F.A.M. van Hest, Nat. Commun. 7, 11143 (2016).

    Article  CAS  Google Scholar 

  41. P. Kumar, M. Pfeffer, B. Willsch, O. Eibl, L. Yedra, S. Eswara, J.N. Audinot, and T. Wirtz, Sol. Energy Mater. Sol. Cells 160, 398 (2017).

    Article  CAS  Google Scholar 

  42. D.K. Sarkar, S. Dhara, K.G.M. Nair, and S. Chowdhury, Nucl. Instruments Methods Phys. Res. Sect. B, 168, 215 (2000).

  43. G. Utlu and N. Artunç, Appl. Surf. Sci. 310, 248 (2014).

    Article  CAS  Google Scholar 

  44. F. Rollert, N.A. Stolwijk, and H. Mehrer, J. Phys. D Appl. Phys. 20, 1148 (1987).

    Article  CAS  Google Scholar 

  45. L. Chen, Y. Zeng, P. Nyugen, and T.L. Alford, Mater. Chem. Phys. 76, 224 (2002).

    Article  CAS  Google Scholar 

  46. L. Weber, Metall. Mater. Trans. A 33, 1145 (2002).

    Article  Google Scholar 

  47. S.W. Jones, Diffusion in silicon (Georgetown: IC Knowledge LLC, 2008), p. 7.

    Google Scholar 

  48. M. Van Craen, L. Frisson, and F.C. Adams, Surf. Interface Anal. 6, 257 (1984).

    Article  Google Scholar 

  49. A. Hiraki and E. Lugujjo, J. Vac. Sci. Technol. 9, 155 (1971).

    Article  Google Scholar 

  50. J.W. Tringe, G. Vanamu, and S.H. Zaidi, J. Appl. Phys. 104, 094317 (2008).

    Article  Google Scholar 

  51. M. Asoro, J. Damiano, and P. Ferreira, Microsc. Microanal. 15, 706 (2009).

    Article  Google Scholar 

  52. M.S. Martin, N.D. Theodore, C.-C. Wei, and L. Shao, Sci. Rep. 4, 6744 (2014).

    Article  CAS  Google Scholar 

  53. R.C. Jaeger, Introduction to Microelectronic Fabrication (New Jersey: Prentice-Hall Inc, 2002), p. 48.

    Google Scholar 

  54. M.L. Zheludkevich, A.G. Gusakov, A.G. Voropaev, A.A. Vecher, E.N. Kozyrski, and S.A Raspopov, Oxid. Met., 61, 39 (2004).

  55. S. Bin Cho, H.S. Kim, and J.Y. Huh, Acta Mater. 70, 1 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Malaysian government for partial funding of this research through PRGS, FRGS, ERGS, AP, ETP, and MIDA grants. We would also like to thank Ms. S. Seow for invaluable assistance with SEM and EDX measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mahmmod Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.M., Leong, C.S., Winder, R.W. et al. A Phenomenological Model of the Screen-Printed, Silver Paste Contact to Si Substrate. J. Electron. Mater. 47, 6791–6810 (2018). https://doi.org/10.1007/s11664-018-6605-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6605-y

Keywords

Navigation