Skip to main content
Log in

Fabrication of PMN-PT/Epoxy 2–2 Composite Ultrasonic Transducers and Analysis Based on Equivalent Circuit Model

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Single-crystal (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN-PT) has great potential for use in ultrasonic applications; however, it is challenging to achieve both broad bandwidth and high sensitivity owing to the mismatch in acoustic impedance between the piezoelectric materials and loading medium. Fabrication of a matching layer for transducers is challenging owing to the increase in the center frequency of the transducer. In this study, a 2–2 PMN-PT-crystal composite was designed and fabricated, exhibiting desirable piezoelectric properties and lower acoustic impedance compared with single-crystal PMN-PT. Transducers based on the 2–2 PMN-PT composite were fabricated and analyzed in detail to investigate their sensitivity and bandwidth. Moreover, the effects of a backing layer on the transducer were investigated. The measured results showed that the bandwidth improved from 21.28% to 35.54% at the cost of reduced sensitivity of the transducer. Systematic analysis of this phenomenon using an equivalent circuit based on the Mason model is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Zhou, S. Lau, D. Wu, and K.K. Shung, Prog. Mater. Sci. 56, 139 (2011).

    Article  CAS  Google Scholar 

  2. Q. Zhou, K.H. Lam, H. Zheng, W. Qiu, and K.K. Shung, Prog. Mater. Sci. 66, 87 (2014).

    Article  CAS  Google Scholar 

  3. B. Zhu, C. Fei, C. Wang, Y. Zhu, X. Yang, H. Zheng, Q. Zhou, and K.K. Shung, ACS Sens. 2, 172 (2017).

    Article  CAS  Google Scholar 

  4. C. Fei, Y. Li, B. Zhu, C.T. Chiu, Z. Chen, D. Li, Y. Yang, K. Kirk Shung, and Q. Zhou, Appl. Phys. Lett. 109, 173509 (2016).

    Article  Google Scholar 

  5. Z. Chen, Y. Wu, Y. Yang, J. Li, B. Xie, X. Li, S. Lei, J. Ou-Yang, X. Yang, Q. Zhou, and B. Zhu, Nano Energy 46, 314 (2018).

    Article  CAS  Google Scholar 

  6. J. Brown, S. Sharma, J. Leadbetter, S. Cochran, and R. Adamson, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 61, 1911 (2014).

    Article  Google Scholar 

  7. J.Y. Lu and J.F. Greenleaf, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 37, 438 (1990).

    Article  CAS  Google Scholar 

  8. X. Li, T. Ma, J. Tian, P. Han, Q. Zhou, and K.K. Shung, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 61, 1171 (2014).

    Article  Google Scholar 

  9. T.R. Shrout, Z.P. Chang, N. Kim, and S. Markgraf, Ferroelectr. Lett. Sect. 12, 63 (1990).

    Article  CAS  Google Scholar 

  10. C. Fei, J. Ma, C.T. Chiu, J.A. Williams, W. Fong, Z. Chen, B. Zhu, R. Xiong, J. Shi, T.K. Hsiai, K.K. Shung, and Q. Zhou, Appl. Phys. Lett. 107, 123505 (2015).

    Article  Google Scholar 

  11. G. Kossoff, IEEE Trans. Sonics Ultrasonics 13, 20 (1966).

    Article  Google Scholar 

  12. M.G. Grewe, T.R. Gururaja, T.R. Shrout, and R.E. Newnham, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 37, 506 (1990).

    Article  CAS  Google Scholar 

  13. S. Ballandras, M. Wilm, P.-F. Edoa, A. Soufyane, V. Laude, W. Steichen, and R. Lardat, J. Appl. Phys. 93, 702 (2002).

    Article  Google Scholar 

  14. T. Takenaka, H. Nagata, Y. Hiruma, Jpn. J. Appl. Phys. 47, 3787 (2008)

    Article  CAS  Google Scholar 

  15. T.R. Gururaja, W.A. Schulze, L.E. Cross, R.E. Newnham, B.A. Auld, and Y.J. Wang, IEEE Trans. Sonics Ultrasonics 32, 481 (1985).

    Article  Google Scholar 

  16. W.A. Smith, in Proceedings IEEE 7th International Symposium on Applications of Ferroelectrics, 1990, p. 145.

  17. J. Tian, K. Meneou, B. Stone, and P. Han, in Piezoelectric Crystal Composite for High Frequency Ultrasound Application, 2010, p. 65.

  18. M. Lous Gwenaëlle, A. Cornejo Iván, F. McNulty Thomas, A. Safari, and C. Danforth Stephen, J. Am. Ceram. Soc. 83, 124 (2008).

    Article  Google Scholar 

  19. J.M. Cannata, T.A. Ritter, C. Wo-Hsing, R.H. Silverman, and K.K. Shung, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 50, 1548 (2003).

    Article  Google Scholar 

  20. R. Lerch, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 37, 233 (1990).

    Article  CAS  Google Scholar 

  21. S. Sherrit, S.P. Leary, B.P. Dolgin, and Y. Bar-Cohen, in Comparison of the Mason and KLM Equivalent Circuits for Piezoelectric Resonators in the Thickness Mode, 1999, p. 921.

  22. R.E. Newnham, L.J. Bowen, K.A. Klicker, and L.E. Cross, Mater. Des. 2, 93 (1980).

    Article  CAS  Google Scholar 

  23. J.A. Ketterling, O. Aristizabal, D.H. Turnbull, and F.L. Lizzi, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 52, 672 (2005).

    Article  Google Scholar 

Download references

Acknowledgement

Financial support from the National Natural Science Foundations of China (11604251), National Key Research and Development Program of China (2017YFC0109703), National Key Project of Intergovernmental Cooperation in International Scientific and Technological Innovation (2016YFE0107900), and Natural Science Foundations of Shaanxi Province (2017JQ1006), and Xidian University (XJS16034, JBG161101) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlong Fei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, S., Yang, X., Fei, C. et al. Fabrication of PMN-PT/Epoxy 2–2 Composite Ultrasonic Transducers and Analysis Based on Equivalent Circuit Model. J. Electron. Mater. 47, 6842–6847 (2018). https://doi.org/10.1007/s11664-018-6603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6603-0

Keywords

Navigation