Skip to main content
Log in

Transparent Thin-Film Transistors Based on c-Axis Oriented, Vertically Aligned ZnO Nanorod Arrays via Solution Processing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A bottom-gate, top-contact transparent thin film transistor (TFT) based on c-axis oriented, vertically aligned ZnO nanorod arrays was fabricated on glass substrates via solution processing, in which ZnO nanorod arrays were synthesized on ZnO seed layers through a simple hydrothermal route. This TFT used SiO2 and indium tin oxide as the gate insulator and gate electrode, respectively. The source and drain electrodes were formed by radio frequency sputtered Au through a shadow mask. This ZnO TFT exhibited n-channel enhancement behavior with a field effective mobility of 3.86 cm2 V−1 s−1, a current on-to-off ratio of 65.5 and a threshold voltage of 1 V. Moreover, the ZnO TFT has a high transmittance of 80% in the visible spectrum. Our results demonstrate that hydrothermally grown, vertically aligned ZnO nanorod arrays are very promising for the fabrication of cost effective and high performance transparent thin-film transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).

    Article  Google Scholar 

  2. X.G. Yu, T.J. Marks, and A. Facchetti, Nat. Mater. 15, 383 (2016).

    Article  Google Scholar 

  3. Y.H. Kim, J.S. Heo, T.H. Kim, S.J. Park, M.H. Yoon, J.W. Kim, M.S. Oh, G.R. Yi, Y.Y. Noh, and S.K. Park, Nature 489, 128 (2012).

    Article  Google Scholar 

  4. W.G. Kim, Y.J. Tak, B.D. Ahn, T.S. Jung, K.B. Chung, and H.J. Kim, Sci. Rep. 6, 23039 (2016).

    Article  Google Scholar 

  5. H.C. Cheng, C.F. Chen, and C.Y. Tsay, Appl. Phys. Lett. 90, 012113 (2007).

    Article  Google Scholar 

  6. P.G. Carey, P.M. Smith, S.D. Theiss, and P. Wickboldt, J. Vac. Sci. Technol. A 17, 1946 (1999).

    Article  Google Scholar 

  7. E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Thin Solid Films 487, 205 (2005).

    Article  Google Scholar 

  8. Ü. ÖzgÜr, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, and H.J. Morkoc, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  9. R.L. Hoffman, B.J. Norris, and J.F. Wager, Appl. Phys. Lett. 82, 733 (2003).

    Article  Google Scholar 

  10. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).

    Article  Google Scholar 

  11. C. Dagdeviren, S.W. Hwang, Y. Su, S. Kim, H. Cheng, O. Gur, R. Haney, F.G. Omenetto, Y. Huang, and J.A. Rogers, Small 9, 3398 (2013).

    Article  Google Scholar 

  12. D. Karnaushenko, N. Münzenrieder, D.D. Karnaushenko, B. Koch, A.K. Meyer, S. Baunack, L. Petti, G. Tröster, D. Makarov, and O.G. Schmidt, Adv. Mater. 27, 6797 (2015).

    Article  Google Scholar 

  13. L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella, F. Bottacchi, T.D. Anthopoulos, and G. Tröster, Appl. Phys. Rev. 3, 021303 (2016).

    Article  Google Scholar 

  14. E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Goncalves, A.J.S. Marques, R.F.P. Martins, and L.M.N. Pereira, Appl. Phys. Lett. 85, 2541 (2004).

    Article  Google Scholar 

  15. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).

    Article  Google Scholar 

  16. Y.I. Alivov, J.E. Van Nostrand, D.C. Look, M.V. Chukichev, and B.M. Ataev, Appl. Phys. Lett. 83, 2943 (2003).

    Article  Google Scholar 

  17. A.K. Tripathi, E.C.P. Smits, J.B.P.H. van der Putten, M. van Neer, K. Myny, M. Nag, S. Steudel, P. Vicca, K. O’Neill, E. van Veenendaal, J. Genoe, P. Heremans, and G.H. Gelinck, Appl. Phys. Lett. 98, 162102 (2011).

    Article  Google Scholar 

  18. K. Keis, E. Magnusson, H. Lindstrőm, S.E. Lindquist, and A. Hagfeldt, Sol. Energy Mater. Sol. C. 73, 51 (2002).

    Article  Google Scholar 

  19. K. Cheng, G. Cheng, S.J. Wang, L.S. Li, S.X. Dai, X.T. Zhang, B.S. Zou, and Z.L. Du, New J. Phys. 9, 214 (2007).

    Article  Google Scholar 

  20. J.F. Chang, H. Kuo, I.C. Leu, and M.H. Hon, Sensor. Actuat. B Chem. 84, 258 (2002).

    Article  Google Scholar 

  21. R.L. Hoffman, J. Appl. Phys. 95, 5813 (2004).

    Article  Google Scholar 

  22. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, J. Appl. Phys. 93, 1624 (2003).

    Article  Google Scholar 

  23. D.L. Zhang, J.B. Zhang, Q.M. Wu, and X.S. Miao, J. Am. Ceram. Soc. 93, 3284 (2010).

    Article  Google Scholar 

  24. S. Kwon, S. Bang, S. Lee, S. Jeon, W. Jeong, H. Kim, S.C. Gong, H.J. Chang, H. Park, and H. Jeon, Semicond. Sci. Technol. 24, 035015 (2009).

    Article  Google Scholar 

  25. D.L. Zhang, J.B. Zhang, Y.G. Cheng, L. Yuan, and X.S. Miao, J. Am. Ceram. Soc. 93, 3291 (2010).

    Article  Google Scholar 

  26. D.L. Zhang, Y.P. Huang, J.B. Zhang, L. Yuan, and X.S. Miao, J. Electron. Mater. 40, 459 (2011).

    Article  Google Scholar 

  27. J.H. Park, J.S. Lee, Y.W. Noh, K.H.N. Shin, and D.J. Lee, J. Mater. Chem. C 4, 7948 (2016).

    Article  Google Scholar 

  28. Y.R. Xie, L. Wei, G.D. Wei, Q.H. Li, D. Wang, Y.X. Chen, S.S. Yan, G.L. Liu, L.M. Mei, and J. Jiao, Nanoscale Res. Lett. 8, 188 (2013).

    Article  Google Scholar 

  29. A.B. Yadav, A. Pandey, and D. Somvanshi, IEEE Trans. Electron Devices 62, 1879 (2015).

    Article  Google Scholar 

  30. H. Yaghoubi, M. Schaefer, S. Yaghoubi, D. Jun, R. Schlaf, J.T. Beatty, and A. Takshi, Nanotechnology 28, 5 (2016).

    Google Scholar 

  31. L. Yang, W.Z. Liu, H.Y. Xu, J.G. Ma, C. Zhang, C.Y. Liu, Z.Q. Wang, and Y.C. Liu, J. Mater. Chem. C 5, 3288 (2017).

    Article  Google Scholar 

  32. L. Yin, H.S. Ding, Z.L. Yuan, W.D. Huang, C.J. Shuai, Z.X. Xiong, J.P. Deng, and T.B. Lv, Opt. Mater. 80, 149 (2018).

    Article  Google Scholar 

  33. X. Zhou, Q. Zhang, L. Gan, X. Li, H.Q. Li, Y. Zhang, D. Golberg, and T.Y. Zhai, Adv. Funct. Mater. 26, 704 (2016).

    Article  Google Scholar 

  34. H. Faber, S. Das, Y.H. Lin, N. Pliatsikas, K. Zhao, T. Kehagias, G. Dimitrakopulos, A. Amassian, P.A. Patsalas, and T.D. Anthopoulos, Sci. Adv. 3, e1602640 (2017).

    Article  Google Scholar 

  35. S.V. Kurudirek, K.C. Pradel, and C.J. Summers, J. Alloys Compd. 702, 700 (2017).

    Article  Google Scholar 

  36. W.Y. Zhao, C.J. Tian, Z.P. Xie, C.A. Wang, W.Y. Fu, and H.B. Yang, Front. Mater. Sci. 11, 271 (2017).

    Article  Google Scholar 

  37. S.B. Kim, W.W. Lee, J. Yi, W.I. Park, J.S. Kim, and W.T. Nichols, ACS Appl. Mater. Interf. 4, 3910 (2012).

    Article  Google Scholar 

  38. S. Oh, T. Nagata, J. Volk, and Y. Wakayama, Appl. Phys. Express 5, 095003 (2012).

    Article  Google Scholar 

  39. J. Yi, J.M. Lee, and W.I. Park, Sensor. Actuat. B Chem. 155, 264 (2011).

    Article  Google Scholar 

  40. H. Seifarth, R. Grötzschel, A. Markwitz, W. Matz, P. Nitzsche, and L. Rebohle, Thin Solid Films 330, 202 (1998).

    Article  Google Scholar 

  41. A. Tabata, N. Matsuno, Y. Suzuoki, and T. Mizutani, Thin Solid Films 289, 84 (1996).

    Article  Google Scholar 

  42. J.K. Hong, H.R. Kim, and H.H. Park, Thin Solid Films 332, 449 (1998).

    Article  Google Scholar 

  43. C. Ternon, F. Gourbilleau, X. Portier, P. Voivenel, and C. Dufour, Thin Solid Films 419, 5 (2002).

    Article  Google Scholar 

  44. T. Minami, T. Utsubo, T. Yamatani, T. Miyata, and Y. Ohbayashi, Thin Solid Films 426, 47 (2003).

    Article  Google Scholar 

  45. K.H. Kim, K.C. Park, and D.Y. Ma, Structural. J. Appl. Phys. 81, 7764 (1997).

    Article  Google Scholar 

  46. J.I. Pankove, Optical Processes in Semiconductors, 2nd ed. (New York: Dover Publication Inc., 2010).

    Google Scholar 

  47. G.W. She, X.H. Zhang, and W.S. Shi, Appl. Phys. Lett. 92, 053111 (2008).

    Article  Google Scholar 

  48. J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, and L. Vayssieres, Nanotechnology 17, 4995 (2006).

    Article  Google Scholar 

  49. B.H. Tahar, J. Eur. Ceram. Soc. 25, 3301 (2005).

    Article  Google Scholar 

  50. K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983).

    Article  Google Scholar 

  51. S. Fujihara, C. Sasaki, and T. Kimura, Appl. Surf. Sci. 180, 341 (2001).

    Article  Google Scholar 

  52. B.S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, J. Am. Chem. Soc. 129, 2750 (2007).

    Article  Google Scholar 

  53. Y. Natsume and H. Sakata, Thin Solid Films 372, 30 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from National Natural Science Foundation of China (Grant No. 51302096), China Scholarship Council (Grant No. 201606165006), the Fundamental Research Funds for the Central Universities (Grant Nos. 2017KFYXJJ039 and 2015TS051), the Hubei Provincial Natural Science Foundation of China (Grant No. ZRMS2017000370), the Fundamental Research Funds of Wuhan City (Grant No. 2016060101010075), and the Innovation Foundation of Shenzhen Government (Grant No. JCYJ20160429182959405) are acknowledged. HLL acknowledges partial support from the National Key Research and Development Program of China (Grant No. 2016YFB0402705). The authors thank the Analytical and Testing Center of Huazhong University of Science and Technology for making available the shared experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honglang Li or Daoli Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 541 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xia, Y., Hu, W. et al. Transparent Thin-Film Transistors Based on c-Axis Oriented, Vertically Aligned ZnO Nanorod Arrays via Solution Processing. J. Electron. Mater. 47, 6091–6100 (2018). https://doi.org/10.1007/s11664-018-6471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6471-7

Keywords

Navigation