Skip to main content
Log in

Synthesis of Magnetite Nanoparticles and Its Application As Electrode Material for the Electrochemical Oxidation of Methanol

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, magnetite (Fe3O4) nanoparticles were synthesized by a simple and facile chemical co-precipitation method at ambient laboratory conditions. The synthesized Fe3O4 nanostructures were characterized for their morphology, size, crystalline structure and component analysis using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, x-ray diffraction and electron dispersive x-ray spectroscopy. The Fe3O4 nanoparticles showed semi-spherical geometry with an average particle diameter up to 14 nm. The catalytic properties of Fe3O4 nanoparticles were evaluated for electrochemical oxidation of methanol. For this purpose, the magnetite NPs were coated on the surface of an indium tin oxide (ITO) electrode and used as a working electrode in the electrochemical oxidation of methanol. The effect of potential scan rate, the concentration of methanol, the volume of electrolyte and catalyst (Fe3O4 NPs) deposition volume was studied to get high peak current densities for methanol oxidation. The stability and selectivity of the fabricated electrode (Fe3O4/ITO) were also assessed during the electrochemical process. This study revealed that the Fe3O4/ITO electrode was highly stable and selective towards methanol electrochemical oxidation in basic (KOH) media. Bare ITO and Fe3O4 NPs modified glassy (Fe3O4/GCE) electrodes were also tested in the electro-oxidation study of methanol, but their peak current density responses were very low as compared to the Fe3O4/ITO electrode, which showed high electrocatalytic activity towards methanol oxidation under similar conditions. We hope that Fe3O4 nanoparticles (NPs) will be an alternative for methanol oxidation as compared to the expensive noble metals (Pt, Au, and Pd) for energy generation processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Antolini and E. Gonzalez, J. Power Sources 195, 3431 (2010).

    Article  Google Scholar 

  2. K. Scott and A.K. Shukla, Modern Aspects of Electrochemistry, ed. R.E. White, 40th ed. (New York: Springer-Verlag, 2007), pp. 127–227.

  3. R. Singh, R. Awasthi, and C. Sharma, Int. J. Electrochem. Sci. 9, 5607 (2014).

    Google Scholar 

  4. R. Awasthi and R. Singh, Int. J. Electrochem. Sci. 6, 4775 (2011).

    Google Scholar 

  5. R. Awasthi and R. Singh, Int. J. Hydrogen Energy 37, 2103 (2012).

    Article  Google Scholar 

  6. C. Bianchini and P.K. Shen, Chem. Rev. 109, 4183 (2009).

    Article  Google Scholar 

  7. C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, and J.-M. Léger, J. Power Sources 105, 283 (2002).

    Article  Google Scholar 

  8. E. Yu and K. Scott, J. Appl. Electrochem. 35, 91 (2005).

    Article  Google Scholar 

  9. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, and D.P. Wilkinson, J. Power Sources 155, 95 (2006).

    Article  Google Scholar 

  10. E.R. Choban, J. Spendelow, L. Gancs, A. Wieckowski, and P. Kenis, Electrochim. Acta 50, 5390 (2005).

    Article  Google Scholar 

  11. E. Hao Yu, U. Krewer, and K. Scott, Energies 3, 1499 (2010).

    Article  Google Scholar 

  12. J.R. Varcoe and R.C. Slade, Electrochem. Commun. 8, 839 (2006).

    Article  Google Scholar 

  13. J.S. Spendelow and A. Wieckowski, Phys. Chem. Chem. Phys. 9, 2654 (2007).

    Article  Google Scholar 

  14. Y. Tong, C. Gu, J. Zhang, M. Huang, H. Tang, X. Wang, and J. Tu, J. Mater Chem. A 3, 4669 (2015).

    Article  Google Scholar 

  15. Y. Tong, C. Gu, J. Zhang, H. Tang, Y. Li, X. Wang, and J. Tu, Electrochim. Acta 187, 11 (2016).

    Article  Google Scholar 

  16. Y. Tong, C. Gu, J. Zhang, H. Tang, X. Wang, and J. Tu, Int. J. Hydrogen Energy 41, 6342 (2016).

    Article  Google Scholar 

  17. H. Zhu, C. Gu, X. Ge, and J. Tu, Electrochim. Acta 222, 938 (2016).

    Article  Google Scholar 

  18. A. Pestryakov, V. Lunin, A. Devochkin, L. Petrov, N. Bogdanchikova, and V. Petranovskii, Appl. Catal. A 227, 125 (2002).

    Article  Google Scholar 

  19. X. Wang, W. Wang, Z. Qi, C. Zhao, H. Ji, and Z. Zhang, J. Power Sources 195, 6740 (2010).

    Article  Google Scholar 

  20. G.C. Abuin, P. Nonjola, E.A. Franceschini, F.H. Izraelevitch, M.K. Mathe, and H.R. Corti, Int. J. Hydrogen Energy 35, 5849 (2010).

    Article  Google Scholar 

  21. G. Karim-Nezhad and P.S. Dorraji, Electrochim. Acta 55, 3414 (2010).

    Article  Google Scholar 

  22. B. McNicol, D. Rand, and K. Williams, J. Power Sources 83, 15 (1999).

    Article  Google Scholar 

  23. P. Samant, C. Rangel, M. Romero, J. Fernandes, and J. Figueiredo, J. Power Sources 151, 79 (2005).

    Article  Google Scholar 

  24. J. Wu, Z. Li, X. Huang, and Y. Lin, J. Power Sources 224, 1 (2013).

    Article  Google Scholar 

  25. T. Iwasita, Electrochim. Acta 47, 3663 (2002).

    Article  Google Scholar 

  26. H. Heli, M. Jafarian, M. Mahjani, and F. Gobal, Electrochim. Acta 49, 4999 (2004).

    Article  Google Scholar 

  27. C. Du, T. Zhao, and W. Yang, Electrochim. Acta 52, 5266 (2007).

    Article  Google Scholar 

  28. A. Heinzel and V. Barragan, J. Power Sources 84, 70 (1999).

    Article  Google Scholar 

  29. M. Ravikumar and A. Shukla, J. Electrochem. Soc. 143, 2601 (1996).

    Article  Google Scholar 

  30. S. Song, W. Zhou, Z. Liang, R. Cai, G. Sun, Q. Xin, V. Stergiopoulos, and P. Tsiakaras, Appl. Catal. B 55, 65 (2005).

    Article  Google Scholar 

  31. S. Palmas, F. Ferrara, A. Pisu, and C. Cannas, Chem. Pap. 61, 77 (2007).

    Article  Google Scholar 

  32. C.S. Sharma, R. Awasthi, R.N. Singh, and A.S.K. Sinha, Phys. Chem. Chem. Phys. 15, 20333 (2013).

    Article  Google Scholar 

  33. J. Singh, N. Singh, and R. Singh, Int. J. Hydrogen Energy 24, 433 (1999).

    Article  Google Scholar 

  34. T.H. Housmans, A.H. Wonders, and M.T. Koper, J. Phys. Chem. B 110, 10021 (2006).

    Article  Google Scholar 

  35. E. Mostafa, A.E.A. Abd-El-Latif, and H. Baltruschat, ChemPhysChem 15, 2029 (2014).

    Article  Google Scholar 

  36. M. Neurock, M. Janik, and A. Wieckowski, Faraday Discuss. 140, 363 (2009).

    Article  Google Scholar 

  37. K.I. Ozoemena, RSC Adv. 6, 89523 (2016).

    Article  Google Scholar 

  38. W. Vielstich, J. Braz. Chem. Soc. 14, 503 (2003).

    Article  Google Scholar 

  39. E.E. Brock, Y. Oshima, P.E. Savage, and J.R. Barker, J. Phys. Chem. 100, 15834 (1996).

    Article  Google Scholar 

  40. D.R. Shankaran and S.S. Narayanan, Sensors 10, 13 (2001).

    Google Scholar 

  41. J.M. Zen, A. Senthil Kumar, and D.M. Tsai, Electroanalysis 15, 1073 (2003).

    Article  Google Scholar 

  42. S. Cherevko and C.-H. Chung, Electrochim. Acta 55, 6383 (2010).

    Article  Google Scholar 

  43. S. Cherevko, X. Xing, and C.-H. Chung, Electrochem. Commun. 12, 467–470 (2010).

    Article  Google Scholar 

  44. A. Kloke, F. von Stetten, R. Zengerle, and S. Kerzenmacher, Adv. Mater. 23, 4976 (2011).

    Article  Google Scholar 

  45. Y. Li, Y.-Y. Song, C. Yang, and X.-H. Xia, Electrochem. Commun. 9, 981 (2007).

    Article  Google Scholar 

  46. C.-Y. Cao, W. Guo, Z.-M. Cui, W.-G. Song, and W. Cai, J. Mater. Chem. 21, 3204 (2011).

    Article  Google Scholar 

  47. M.L. Huang, C.D. Gu, X. Ge, X.L. Wang, and J.P. Tu, J. Power Sources 259, 98 (2014).

    Article  Google Scholar 

  48. X. Xia, J. Tu, Y. Zhang, Y. Mai, X. Wang, C. Gu, and X. Zhao, J. Phys. Chem. C 115, 22662 (2011).

    Article  Google Scholar 

  49. X. Xia, J. Tu, Y. Zhang, Y. Mai, X. Wang, C. Gu, and X. Zhao, RSC Adv. 2, 1835 (2012).

    Article  Google Scholar 

  50. N.M. Nor, Z. Lockman, and K.A. Razak, Procedia Chem. 19, 50–56 (2016).

    Article  Google Scholar 

  51. A. Kavitha and K.B. Yazhini, Korean J. Chem. Eng. 33, 1948 (2016).

    Article  Google Scholar 

  52. M. Amir, M.M. Tunesi, R.A. Soomro, A. Baykal, and N.H. Kalwar, J. Electron. Mater. 47, 2198–2208 (2018).

    Article  Google Scholar 

  53. S. Rasappa, T. Ghoshal, D. Borah, R. Senthamaraikannan, J.D. Holmes, and M.A. Morris, Sci. Rep. 5, 13270 (2015).

    Article  Google Scholar 

  54. A. Sharma, D. Baral, H. Bohidar, and P.R. Solanki, Chem. Biol. Interact. 238, 129–137 (2015).

    Article  Google Scholar 

  55. M.T. Shah, A. Balouch, K. Rajar, I.A. Brohi, A.A. Umar, and A.C.S. Appl, Mater. Interfaces 7, 6480 (2015).

    Article  Google Scholar 

  56. A. Balouch, A. Ali Umar, A.A. Shah, M. Mat Salleh, and M. Oyama, ACS Appl. Mater. Interfaces 5, 9843 (2013).

    Article  Google Scholar 

  57. R.N. Goyal, V.K. Gupta, M. Oyama, and N. Bachheti, Talanta 72, 976 (2007).

    Article  Google Scholar 

  58. D. Creanga and G. Calugaru, J. Magn. Magn. Mater. 289, 81 (2005).

    Article  Google Scholar 

  59. M.A. Rahim, R.A. Hameed, and M. Khalil, J. Power Sources 134, 160 (2004).

    Article  Google Scholar 

  60. S.-Y. Xie, Z.-J. Ma, C.-F. Wang, S.-C. Lin, Z.-Y. Jiang, R.-B. Huang, and L.-S. Zheng, J. Solid State Chem. 177, 3743 (2004).

    Article  Google Scholar 

  61. Y. Zhao, C. Li, W. Zhao, Q. Du, B. Chi, J. Sun, Z. Chai, and X. Wang, Electrochim. Acta 107, 52 (2013).

    Article  Google Scholar 

  62. A.J. Bard and L.R. Faulkner, Electrochemical Methods, 2nd ed. (New York: Wiley, 2001), p. 482.

    Google Scholar 

  63. Y. Feng, J. Liu, and Y. Cui, Environmental Electrocatalytic Electrode–Structure, Characteristic and Preparation (Beijing: Science Press, 2010), p. 361. (in Chinese).

  64. D. Borah, M. Shaw, S. Rasappa, R. Farrell, C. O’Mahony, C. Faulkner, M. Bosea, P. Gleeson, J. Holmes, and M. Morris, J. Phys. D Appl. Phys. 44, 174012 (2011).

    Article  Google Scholar 

  65. A.L. Eckermann, D.J. Feld, J.A. Shaw, and T.J. Meade, Coord. Chem. Rev. 254, 1769 (2010).

    Article  Google Scholar 

  66. R. Pattabiraman, Appl. Catal. A Gen. 153, 9 (1997).

    Article  Google Scholar 

  67. P.R. Solanki, S.K. Arya, S. Singh, M. Pandey, and B. Malhotra, Sens. Actuator B-Chem. 123, 829 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamna Balouch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M.T., Balouch, A., Panah, P. et al. Synthesis of Magnetite Nanoparticles and Its Application As Electrode Material for the Electrochemical Oxidation of Methanol. J. Electron. Mater. 47, 5321–5333 (2018). https://doi.org/10.1007/s11664-018-6409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6409-0

Keywords

Navigation