Skip to main content
Log in

Influence of Annealing Ambient on the Photoelectric and Photoelectrochemical Properties of TiO2 Nanorod Arrays

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ordered TiO2 nanorod arrays (NRAs) have been synthesized on transparent conducting F-doped SnO2 (FTO) substrates via a facile hydrothermal method for dye-sensitized solar cells (DSSCs). Annealing in air at 500°C resulted in a large enhancement of DSSC performance, while the performance was much decreased after annealing in the reducing ambient (Ar or vacuum). This was ascribed to a lowering of the interfacial charge separation or injection. Moreover, it was also found that the photoelectrochemical activity of TiO2 NRA was enhanced after annealing in Ar or vacuum, which was totally opposite to the variation of DSSC performance, and was ascribed to the enhancements of both interface charge transfer and visible-light absorption (as had been confirmed by the color change).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tian, Z. Zhao, A. Kumar, R.I. Boughtonc, and H. Liu, Chem. Soc. Rev. 43, 6920 (2014).

    Article  Google Scholar 

  2. P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, Nanoscale 2, 45 (2010).

    Article  Google Scholar 

  3. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  4. J.R. Jenning, A. Ghicov, L.M. Peter, P. Schmuki, and A.B. Walker, J. Am. Chem. Soc. 130, 13364 (2008).

    Article  Google Scholar 

  5. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, J. Am. Chem. Soc. 126, 14943 (2004).

    Article  Google Scholar 

  6. B. Liu, J.E. Boercker, and E.S. Aydil, Nanotechnology 19, 505604 (2008).

    Article  Google Scholar 

  7. X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, and C.A. Grimes, Nano Lett. 8, 3781 (2006).

    Article  Google Scholar 

  8. B. Liu and E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2008).

    Article  Google Scholar 

  9. M. Lv, D. Zheng, M. Ye, J. Xiao, W. Guo, Y. Lai, L. Sun, C. Lin, and J. Zuo, Energy Environ. Sci. 6, 1615 (2013).

    Article  Google Scholar 

  10. Y. Zhao, X. Gu, and Y. Qiang, Thin Solid Films 520, 2814 (2012).

    Article  Google Scholar 

  11. X.Q. Gu, Y.L. Zhao, and Y.H. Qiang, J. Mater. Sci. Mater. Electron. 23, 1373 (2012).

    Article  Google Scholar 

  12. S. Zhang, X.Q. Gu, Y.L. Zhao, and Y.H. Qiang, J. Electron. Mater. 45, 648 (2015).

    Article  Google Scholar 

  13. J. Li and N. Wu, Catal. Sci. Technol. 5, 1360 (2015).

    Article  Google Scholar 

  14. X. Wang, J. Xie, and C.M. Li, J. Mater. Chem. A 3, 1235 (2015).

    Article  Google Scholar 

  15. F. Zuo, K. Bozhilov, R.J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, and P. Feng, Angew. Chem. Int. Ed. 51, 6223 (2012).

    Article  Google Scholar 

  16. X. Liu, H. Zhang, X. Yao, T. An, P. Liu, Y. Wang, F. Peng, A.R. Carroll, and H. Zhao, Nano Res. 5, 762 (2012).

    Article  Google Scholar 

  17. H. Pan, J. Mater. Sci. 50, 4324 (2015).

    Article  Google Scholar 

  18. H. Pan, Y.W. Zhang, V.B. Shenoy, and H. Gao, J. Phys. Chem. C 115, 12224 (2011).

    Article  Google Scholar 

  19. H. Pan, Renew. Sust. Energy Rev. 57, 584 (2016).

    Article  Google Scholar 

  20. H.P. Maruska and A.K. Ghosh, Sol. Energy 20, 443 (1978).

    Article  Google Scholar 

  21. T. Lindgren, J.M. Mwabora, E. Avendaño, J. Jonsson, A. Hoel, C. Granqvist, and S.E. Lindquist, J. Phys. Chem. B 107, 5709 (2003).

    Article  Google Scholar 

  22. C. Fàbrega, D. Monllor-Satoca, S. Ampudia, A. Parra, T. Andreu, and J.R. Morante, J. Phys. Chem. C 117, 20517 (2013).

    Article  Google Scholar 

  23. Z. Zhang and J.T. Yates Jr., Chem. Rev. 112, 5520 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuquan Gu or Yinghuai Qiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Gu, X., He, R. et al. Influence of Annealing Ambient on the Photoelectric and Photoelectrochemical Properties of TiO2 Nanorod Arrays. J. Electron. Mater. 47, 5251–5258 (2018). https://doi.org/10.1007/s11664-018-6397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6397-0

Keywords

Navigation