Skip to main content
Log in

Structural, Electrical and Optical Properties of Sputtered-Grown InN Films on ZnO Buffered Silicon, Bulk GaN, Quartz and Sapphire Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Indium nitride (InN) films were grown on Si (111), bulk GaN, quartz and sapphire substrates by radio frequency magnetron sputtering. Prior to the film deposition, a zinc oxide (ZnO) buffer layer was deposited on all the substrates. The x-ray diffraction patterns of InN films on ZnO-buffered substrates indicated c-plane-oriented films whereas the Raman spectroscopy results indicated A1 (LO) and E2 (high) modes of InN on all the substrates. The crystalline quality of InN was found to be better on sapphire and quartz than on the other substrates. The surface roughness of InN was studied using an atomic force microscope. The results indicated higher surface roughness of the film on sapphire as compared to the others; however, roughness of the film was lower than 8 nm on all the substrates. The electrical properties indicated higher electron mobility of InN (20.20 cm2/Vs) on bulk GaN than on the other substrates. The optical band gap of InN film was more than 2 eV in all the cases and was attributed to high carrier concentration in the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-H. Shih, I. Lo, W.-Y. Pang, and C.-H. Hiseh, J. Phys. Chem. Solids 71, 1664 (2010).

    Article  Google Scholar 

  2. J. Wu, W. Walukiewicz, W. Shan, K. Yu, J. Ager III, and S. Li, J. Appl. Phys. 94, 4457 (2003).

    Article  Google Scholar 

  3. A.G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779 (2003).

    Article  Google Scholar 

  4. C. Gallinat, G. Koblmüller, J. Brown, and J. Speck, J. Appl. Phys. 102, 064907 (2007).

    Article  Google Scholar 

  5. H. Xiao, X. Wang, J. Wang, N. Zhang, H. Liu, and Y. Zeng, J. Cryst. Growth 276, 401 (2005).

    Article  Google Scholar 

  6. H. Lu, W.J. Schaff, L.F. Eastman, and C. Stutz, Appl. Phys. Lett. 82, 1736 (2003).

    Article  Google Scholar 

  7. B. Zhang, H. Song, J. Wang, C. Jia, J. Liu, and X. Xu, J. Cryst. Growth 319, 114 (2011).

    Article  Google Scholar 

  8. S. Inoue, T. Namazu, T. Suda, and K. Koterazawa, Vacuum 74, 443 (2004).

    Article  Google Scholar 

  9. N. Dietz, M. Alevli, V. Woods, M. Strassburg, H. Kang, and I. Ferguson, Phys. Status Solidi B (b) 242, 2985 (2005).

    Article  Google Scholar 

  10. N. Nepal, N.A. Mahadik, L.O. Nyakiti, S.B. Qadri, M.J. Mehl, and J.K. Hite, Cryst. Growth Des. 13, 1485 (2013).

    Article  Google Scholar 

  11. T. Tsuchiya, H. Yamano, O. Miki, A. Wakahara, and A. Yoshida, Jpn. J. Appl. Phys. 38, 1884 (1999).

    Article  Google Scholar 

  12. Y. Cho, O. Brandt, M. Korytov, M. Albrecht, V.M. Kaganer, and M. Ramsteiner, Appl. Phys. Lett. 100, 152105 (2012).

    Article  Google Scholar 

  13. B. Liu, T. Kitajima, D. Chen, and S.R. Leone, J. Vac. Sci. Technol. A 23, 304 (2005).

    Article  Google Scholar 

  14. H. Lu, W.J. Schaff, J. Hwang, H. Wu, G. Koley, and L.F. Eastman, Appl. Phys. Lett. 79, 1489 (2001).

    Article  Google Scholar 

  15. S.-Y. Kuo, F.-I. Lai, W.-C. Chen, W.-T. Lin, C.-N. Hsiao, and H.-I. Lin, Diam. Relat. Mater. 20, 1188 (2011).

    Article  Google Scholar 

  16. O. Laboutin and R. Welser, Appl. Phys. Lett. 92, 223103 (2008).

    Article  Google Scholar 

  17. S.-Y. Kuo, W.-C. Chen, C. Kei, and C. Hsiao, Semicond. Sci. Technol. 23, 055013 (2008).

    Article  Google Scholar 

  18. M.R. Laskar, T. Ganguli, A. Kadir, N. Hatui, A. Rahman, and A. Shah, J. Cryst. Growth 315, 233 (2011).

    Article  Google Scholar 

  19. U. Bashir, Z. Hassan, and N.M. Ahmed, J. Mater. Sci. Mater. Electron. 28, 9228 (2017).

    Article  Google Scholar 

  20. U. Bashir, Z. Hassan, N.M. Ahmed, A. Oglat, and A.S. Yusof, Mater. Sci. Semcond. Proc. 71, 166 (2017).

    Article  Google Scholar 

  21. T. Ohgaki, N. Ohashi, H. Haneda, and A. Yasumori, J. Cryst. Growth 292, 33 (2006).

    Article  Google Scholar 

  22. I. Lo, W. Wang, M. Gau, J. Tsai, S. Tsay, and J. Chiang, Appl. Phys. Lett. 88, 082108 (2006).

    Article  Google Scholar 

  23. S. Ohuchi and T. Takizawa, J. Electron. Mater. 34, 424 (2005).

    Article  Google Scholar 

  24. R. Zhang, P. Zhang, T. Kang, H. Fan, X. Liu, and S. Yang, Appl. Phys. Lett. 91, 162104 (2007).

    Article  Google Scholar 

  25. X. Pu, J. Chen, W. Shen, H. Ogawa, and Q. Guo, J. Appl. Phys. 98, 033527 (2005).

    Article  Google Scholar 

  26. M. Amirhoseiny, S. Ng, and Z. Hassan, Mater. Sci. Semcond. Proc. 35, 216 (2015).

    Article  Google Scholar 

  27. B. Barick and S. Dhar, J. Cryst. Growth 416, 154 (2015).

    Article  Google Scholar 

  28. N. Afzal, M. Devarajan, and K. Ibrahim, Mater. Sci. Semcond. Proc. 51, 8 (2016).

    Article  Google Scholar 

  29. P. Shokeen, A. Jain, A. Kapoor, and V. Gupta, Plasmonics 11, 669 (2016).

    Article  Google Scholar 

  30. S. Singhal, J. Kaur, T. Namgyal, and R. Sharma, Physica B 407, 1223 (2012).

    Article  Google Scholar 

  31. E. Bauer and J.H. van der Merwe, Phys. Rev. B 33, 3657 (1986).

    Article  Google Scholar 

  32. J. Tersoff and F. Legoues, Phys. Rev. Lett. 72, 3570 (1994).

    Article  Google Scholar 

  33. N. Afzal, M. Devarajan, and K. Ibrahim, J Alloys Compd. 652, 407 (2015).

    Article  Google Scholar 

  34. Q. Guo, T. Tanaka, M. Nishio, and H. Ogawa, Jpn. J. Appl. Phys. 47, 612 (2008).

    Article  Google Scholar 

  35. K.S.A. Butcher and T. Tansley, Superlattice Microst. 38, 1 (2005).

    Article  Google Scholar 

  36. H. He, Y. Cao, R. Fu, H. Wang, J. Huang, and C. Huang, J. Mater. Sci. Mater. Electron. 21, 676 (2010).

    Article  Google Scholar 

  37. H. He, Y. Cao, R. Fu, W. Guo, Z. Huang, and M. Wang, Appl. Surf. Sci. 256, 1812 (2010).

    Article  Google Scholar 

  38. H. Hovel and J. Cuomo, Appl. Phys. Lett. 20, 71 (1972).

    Article  Google Scholar 

  39. T. Tansley and C. Foley, J. Appl. Phys. 59, 3241 (1986).

    Article  Google Scholar 

  40. T. Inushima, V. Mamutin, V. Vekshin, S. Ivanov, T. Sakon, and M. Motokawa, J. Cryst. Growth 227, 481 (2001).

    Article  Google Scholar 

  41. K. Butcher, H. Hirshy, R.M. Perks, M. Wintrebert-Fouquet, and P. Chen, Phys. Status Solidi A 203, 66 (2006).

    Article  Google Scholar 

  42. K. Scott, A. Butcher, M. Wintrebert-Fouquet, P.P.T. Chen, K.E. Prince, and H. Timmers, Phys. Status Solidi (c) 2, 2263 (2005).

    Article  Google Scholar 

  43. O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, J. Cryst. Growth 269, 22 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Bashir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, U., Hassan, Z., Ahmed, N.M. et al. Structural, Electrical and Optical Properties of Sputtered-Grown InN Films on ZnO Buffered Silicon, Bulk GaN, Quartz and Sapphire Substrates. J. Electron. Mater. 47, 4875–4881 (2018). https://doi.org/10.1007/s11664-018-6386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6386-3

Keywords

Navigation