Skip to main content
Log in

Design Optimization of a Thermoelectric Cooling Module Using Finite Element Simulations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric industry is concerned about the size reduction, cooling performance and, ultimately, the production cost of thermoelectric modules. Optimization of the size and performance of a commercially available thermoelectric cooling module is considered using finite element simulations. Numerical simulations are performed on eight different three-dimensional geometries of a single thermocouple, and the results are further extended for a whole module as well. The maximum temperature rise at the hot and cold sides of a thermocouple is determined by altering its height and cross-sectional area. The influence of the soldering layer is analyzed numerically using temperature dependent and temperature independent thermoelectric properties of the solder material and the semiconductor pellets. Experiments are conducted to test the cooling performance of the thermoelectric module and the results are compared with the results obtained through simulations. Finally, cooling rate and maximum coefficient of performance (COPmax) are computed using convective and non-convective boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

V :

Applied voltage (\( {\hbox{V}} \))

I :

Applied current (\( {\hbox{A}} \))

\( \Delta T \) :

Temperature difference between hot and cold side (°C)

A P :

Cross-sectional area of the semiconductor pellet (m2)

H P :

Height of the semiconductor pellet (m)

T c :

Cold side temperature (°C)

T h :

Hot side temperature (°C)

\( T_{\rm{sink}} \) :

Heat sink temperature (°C)

Q c :

Heat absorbed at cold side interface (W)

Q h :

Heat released at hot side interface (W)

N :

Number of thermocouples

R :

Electrical resistance (Ω)

COP:

Coefficient of performance

Z :

Figure of merit

h :

Heat transfer coefficient (\( {\hbox{W}} \cdot {\hbox{m}}^{ - 2} \cdot {\hbox{K}}^{ - 1} \))

\( \dot{q}_{{{\rm{c}},\rm{max} }} \) :

Maximum heat flux at cold side (\( {\hbox{W}} \cdot {\hbox{m}}^{ - 2} \))

λ :

Thermal conductivity (\( {\hbox{W}} \cdot {\hbox{m}}^{ - 1} \cdot {\hbox{K}}^{ - 1} \))

λ p :

Thermal conductivity of the p-type semiconductor pellet (\( {\hbox{W}} \cdot {\hbox{m}}^{ - 1} \cdot {\hbox{K}}^{ - 1} \))

λ n :

Thermal conductivity of the n-type semiconductor pellet (\( {\hbox{W}} \cdot {\hbox{m}}^{ - 1} \cdot {\hbox{K}}^{ - 1} \))

α p :

Seebeck coefficient of p-type semiconductor element (\( \mu {\hbox{V}} \cdot {\hbox{K}}^{ - 1} \))

α n :

Seebeck coefficient of n-type semiconductor element (\( \mu {\hbox{V}} \cdot {\hbox{K}}^{ - 1} \))

ρ p :

Bulk density of the p-type semiconductor element (\( {\hbox{kg}} \cdot {\hbox{m}}^{ - 3} \))

ρ n :

Bulk density of the n-type semiconductor element (\( {\hbox{kg}} \cdot {\hbox{m}}^{ - 3} \))

σ :

Electrical conductivity \( ( {\hbox{S}} \cdot {\hbox{m}}^{ - 1} ) \)

References

  1. S. Riffat and X. Ma, Appl. Therm. Eng. 23, 913 (2003).

    Article  Google Scholar 

  2. J.C. Bass, D.T. Allen, S. Ghamaty, and N.B. Elsner, in 20th IEEE Semiconductor Thermal Management and management symposium (2004).

  3. H.J. Goldsmid, Introduction to Thermoelectricity (Springer Series in Materials Science, 2009).

  4. M.T. Terry, Semiconductors and Semimetals. Recent Trends in Thermoelectric Materials Research (London: Academic Press, 2000).

    Google Scholar 

  5. Y. Pan, B. Lin, and J. Chen, Appl. Energy 84, 882 (2007).

    Article  Google Scholar 

  6. M.T. Terry and M.A. Subramanian, Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View (Cambridge: MRS Bulletin, 2006).

    Google Scholar 

  7. A. Kyunghan, L. Changpeng, U. Ctirad, and G.K. Mercouri, Chem. Mater. 21, 1362 (2009).

    Google Scholar 

  8. X. Yukun, C. Guoxin, Q. Haiming, W. Menglei, X. Zhepeng, J. Jun, X. Jingtao, J. Haochuan, and X. Gaojie, J. Mater. Chem. A 2, 8512 (2014).

    Article  Google Scholar 

  9. Y. Jihui and C. Thierry, Mater. Res. Soc. 3, 224 (2006).

    Google Scholar 

  10. M. Fankai, C. Lingen, and S. Fengrui, Cryogenics 49, 57 (2009).

    Article  Google Scholar 

  11. H.L. Kong and J.K. Ook, Int. J. Heat Mass Transfer 50, 1982 (2007).

    Article  Google Scholar 

  12. R.R. Chethan, S.R. Shrikantha, D. Vijay, and R. Karthikeyan, Int. J. Sci. Res. 2, 242 (2013).

    Google Scholar 

  13. Y. Kazuaki and S. Ali, J. Mater. Res. 27, 1211 (2012).

    Article  Google Scholar 

  14. K. Takashi, K. Kazuhisa, M. Kazuya, K. Takeshi, K. Hiromasa, H. Hirokuni, M. Hidetoshi, and F. Akio, J. Electron. Mater. 43, 2405 (2014).

    Article  Google Scholar 

  15. P. Dipak and R.R. Arakerimath, Int. J. Res. Aeron. Mech. Eng. 1, 1 (2013).

    Google Scholar 

  16. N.R. Kristiansen, G.J. Snyder, H.K. Nielsen, and L. Rosendahl, J. Electron. Mater. 41, 1024 (2012).

    Article  Google Scholar 

  17. C.R. Kumar, A. Sonthalia, and G. Rahul, Ther. Sci. 15, 1011 (2011).

    Article  Google Scholar 

  18. J.H. Meng, X.X. Zhang, and X.D. Wang, Energy 71, 367 (2014).

    Article  Google Scholar 

  19. J.H. Meng, X.X. Zhang, and X.D. Wang, J. Power Sources 245, 262 (2014).

    Article  Google Scholar 

  20. D.M. Rowe, Int. J. Innov. Energy Syst. Power 1, 13 (2006).

    Google Scholar 

  21. A. Attar, H. Lee, and W. Sean, J. Electron. Mater. 43, 2179 (2014).

    Article  Google Scholar 

  22. Z. Dongliang and T. Gang, Appl. Therm. Eng. 66, 15 (2014).

    Article  Google Scholar 

  23. B.J. Huang, C.J. Chin, and C.L. Duang, Int. J. Refrig. 23, 208 (2000).

    Article  Google Scholar 

  24. S. Limei, T. Zhilong, H. Qiang, T. Cheng, and C. Huanxin, Appl. Therm. Eng. 112, 688 (2017).

    Article  Google Scholar 

  25. O. Sullivan, M.P. Gupta, S. Mukhopadhyay, and S. Kumar, J. Electron. Packag. 134, 1 (2012).

    Article  Google Scholar 

  26. S.P. Gajendra, B.T. Abhijeet, and K.S. Babalu, in International Conference on Advances in Engineering and Technology (2014), pp. 28–33.

  27. R.E. Simons, M.J. Ellsworth, and R.C. Chu, ASME J. Heat Trans. 127, 76 (2005).

    Article  Google Scholar 

  28. N. Peranio, Structural, chemical, and thermoelectric properties of Bi2Te3 Peltier materials: bulk, thin films and superlattices. Ph.D. thesis. Von der Fakult¨at f¨ur Mathematik und Physik der Eberhard-Karls-Universität zu Tübingen (2008).

  29. K. Park, S.W. Nam, and C.H. Lim, Intermetallics 18, 1744 (2010).

    Article  Google Scholar 

  30. H.J. Goldsmid, Materials 7, 2577 (2014).

    Article  Google Scholar 

  31. M. Hodes, IEEE Trans. Comp. Packag. Technol. 30, 50 (2007).

    Article  Google Scholar 

  32. W.H. Chen, C.Y. Liao, and C.I. Hung, Appl. Energy 89, 464 (2012).

    Article  Google Scholar 

  33. Y.X. Huang, X.D. Wang, C.H. Cheng, and D.T. Lin, Energy 59, 689 (2013).

    Article  Google Scholar 

  34. X.L. Gou, H. Xiao, and S.W. Yang, Appl. Energy 87, 3131 (2010).

    Article  Google Scholar 

  35. Y.H. Cheng and W.K. Lin, Appl. Therm. Eng. 25, 2983 (2005).

    Article  Google Scholar 

  36. M. Hodes, IEEE Trans. Compon. Packag. Technol. 28, 219 (2005).

    Article  Google Scholar 

  37. D.M. Rowe, Handbook of Thermoelectrics (Boston: CRC Press, 1995).

    Book  Google Scholar 

  38. H.S. Lee, Energy 56, 61 (2013).

    Article  Google Scholar 

  39. C. Godart, A.P. Goncalves, E.B. Lopes, and B. Villeroy, NATO Science for Peace Security Series B: Physics and Biophysics (2009), pp. 19–50.

  40. T.Y. Lin, C.N. Liao, and T.W. Albert, J. Electron. Mater. 1, 153 (2012).

    Article  Google Scholar 

  41. S. Mhiaoui, Physical properties of lead free solders in liquid and solid state. Ph.D. thesis. Von der Fakult¨at f¨ur Naturwissenschaften der Technischen Universit¨at Chemnitz (2007).

  42. M. Picard, S. Turenne, D. Vasilevskiy, and R.A. Masut, J. Electron. Mater. 7, 2343 (2013).

    Article  Google Scholar 

  43. W.H. Chen, C.C. Wang, C. Hung, C.C. Yang, and R.C. Juang, Energy 64, 287 (2014).

    Article  Google Scholar 

  44. H. Olle and R. Andersson, J. Electron. Mater. 6, 2247 (2014).

    Google Scholar 

  45. K.S. Kim, K. Suganuma, J.M. Kim, and C.W. Hwang, Miner. Met. Mater. Soc. 6, 39 (2004).

    Article  Google Scholar 

  46. X.D. Wang, Y.X. Huang, C.H. Cheng, D. Lin, and C.H. Kang, Energy 47, 488 (2012).

    Article  Google Scholar 

  47. J.H. Meng, X.X. Zhang, and X.D. Wang, Int. J. Heat Mass Transfer 80, 227 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Author is thankful to the “Deutsche Bundesstiftung Umwelt” for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Abid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, M., Somdalen, R. & Rodrigo, M.S. Design Optimization of a Thermoelectric Cooling Module Using Finite Element Simulations. J. Electron. Mater. 47, 4845–4854 (2018). https://doi.org/10.1007/s11664-018-6369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6369-4

Keywords

Navigation