Skip to main content
Log in

Comparative Analysis of Reduced-Rule Compressed Fuzzy Logic Control and Incremental Conductance MPPT Methods

  • Topical Collection: Electronic Materials for Renewable Energy Applications
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Photovoltaic (PV) power generation has been widely used in recent years, with techniques for increasing the power efficiency representing one of the most important issues. The available maximum power of a PV panel is dependent on environmental conditions such as solar irradiance and temperature. To extract the maximum available power from a PV panel, various maximum-power-point tracking (MPPT) methods are used. In this work, two different MPPT methods were implemented for a 150-W PV panel. The first method, known as incremental conductance (Inc. Cond.) MPPT, determines the maximum power by measuring the derivative of the PV voltage and current. The other method is based on reduced-rule compressed fuzzy logic control (RR-FLC), using which it is relatively easier to determine the maximum power because a single input variable is used to reduce computing loads. In this study, a 150-W PV panel system model was realized using these MPPT methods in MATLAB and the results compared. According to the simulation results, the proposed RR-FLC-based MPPT could increase the response rate and tracking accuracy by 4.66% under standard test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.H. Kwan and X. Wu, Sol. Energy 137, 189 (2016).

    Article  Google Scholar 

  2. H. Bounechba, A. Bouzid, K. Nabti, and H. Benalla, Energy Procedia 50, 677 (2014).

    Article  Google Scholar 

  3. A.R. Jordehi, Renew. Sustain. Energy Rev. 65, 1127 (2016).

    Article  Google Scholar 

  4. F. Chekired, C. Larbes, D. Rekioua, and F. Haddad, Energy Procedia 6, 541 (2011).

    Article  Google Scholar 

  5. T. Radjai, L. Rahmani, S. Mekhilef, and J.P. Gaubert, Sol. Energy 110, 325 (2014).

    Article  Google Scholar 

  6. H. Rezk and A.M. Eltamaly, Sol. Energy 112, 1 (2015).

    Article  Google Scholar 

  7. Z. Cheng, H. Yang, and Y. Sun, in Seventh International Conference on Fuzzy Systems and Knowledge Discovery (2010), pp. 1244–1248.

  8. E. Kandemir, N.S. Cetin, and S. Borekci, Renew. Sustain. Energy Rev. 78, 93 (2017).

    Article  Google Scholar 

  9. Z. Salam, J. Ahmed, and B.S. Merugu, Appl. Energy 107, 135 (2013).

    Article  Google Scholar 

  10. T. Esram, P.L. Chapman, and I.E.E.E. Trans, Energy Convers. 22, 439 (2007).

    Article  Google Scholar 

  11. M.A.G. de Brito, L. Galotto, L.P. Sampaio, G.D.A. e Melo, and C.A. Canesin, IEEE Trans. Ind. Electron. 60, 1156 (2013).

    Article  Google Scholar 

  12. W. Xiao, A. Elnosh, V. Khadkikar, and H. Zeineldin, in 37th Annual Conference of the IEEE Industrial Electronics Society (2011), pp. 3900–3905.

  13. B. Subudhi and R. Pradhan, IEEE Trans. Sustain. Energy 4, 89 (2013).

    Article  Google Scholar 

  14. M.A. Elgendy, B. Zahawi, and D.J. Atkinson, IEEE Trans. Sustain. Energy 4, 108 (2013).

    Article  Google Scholar 

  15. R.I. Putri, S. Wibowo, and M. Rifa’i, Energy Procedia 68, 22 (2015).

    Article  Google Scholar 

  16. S.R. Chafle and U.B. Vaidya, Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2, 2719 (2013).

    Google Scholar 

  17. P. Suwannatrai, P. Liutanakul, and P. Wipasuramonton, in The 8th Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of ThailandConference (2011), pp. 637–640.

  18. A. Safari and S. Mekhilef, in 24th Canadian Conference on Electrical and Computer Engineering (CCECE) (2011), pp. 000345–000347.

  19. S. Lyden and M.E. Haque, Renew. Sustain. Energy Rev. 52, 1504 (2015).

    Article  Google Scholar 

  20. D. Sera, L. Mathe, T. Kerekes, S.V. Spataru, and R. Teodorescu, IEEE J. Photovolt. 3, 1070 (2013).

    Article  Google Scholar 

  21. S. Hajighorbani, M.A.M. Radzi, M.Z.A. Ab Kadir, S. Shafie, R. Khanaki, and M.R. Maghami, Int. J. Photoenergy 2014, 1 (2014).

    Article  Google Scholar 

  22. S. Lalouni, D. Rekioua, T. Rekioua, and E. Matagne, J. Power Sources 193, 899 (2009).

    Article  Google Scholar 

  23. B. Alajmi, K.H. Ahmed, S.J. Finney, and B. Williams, IEEE Trans. Power Electron. 26, 1022 (2011).

    Article  Google Scholar 

  24. B.N. Alajmi, K.H. Ahmed, S.J. Finney, and B.W. Williams, IEEE Trans. Ind. Electron. 60, 1596 (2013).

    Article  Google Scholar 

  25. M.M. Fouad, L.A. Shihata, and E.I. Morgan, Renew. Sustain. Energy Rev. 80, 1499 (2017).

    Article  Google Scholar 

  26. S. Mekhilef, R. Saidur, and M. Kamalisarvestani, Renew. Sustain. Energy Rev. 16, 2920 (2012).

    Article  Google Scholar 

  27. E. Płaczek-Popko, Opto-Electronics Rev. 25, 55 (2017).

    Article  Google Scholar 

  28. M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J.H. Ebinger, and A.W.H. Ho-Baille, Prog. Photovolt. Res. Appl. 25, 668 (2017).

    Article  Google Scholar 

  29. K. Tanabe, Energies 2, 504 (2009).

    Article  Google Scholar 

  30. H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).

    Article  Google Scholar 

  31. J. Werner, B. Niesen, and C. Ballif, Adv. Mater. Interfaces 5, 1700731 (2018).

    Article  Google Scholar 

  32. A. Belkaid, I. Colak, and O. Isik, Appl. Energy 179, 523 (2016).

    Article  Google Scholar 

  33. J. Li and H. Wang, in International Conference on Sustainable Power Generation and Supply (2009), pp. 1–6.

  34. M.Y. Javed, A.F. Murtaza, Q. Ling, S. Qamar, and M.M. Gulzar, Energy Build. 133, 59 (2016).

    Article  Google Scholar 

  35. A. Amir, A. Amir, J. Selvaraj, and N.A. Rahim, Renew. Sustain. Energy Rev. 62, 350 (2016).

    Article  Google Scholar 

  36. E. Kandemir, N.S. Cetin, and S. Borekci, Period. Eng. Nat. Sci. 5, 16 (2017).

    Google Scholar 

  37. Y.-C. Kuo, T.-J. Liang, and J.-F. Chen, IEEE Trans. Ind. Electron. 48, 594 (2001).

    Article  Google Scholar 

  38. Y. Zou, Y. Yu, Y. Zhang, and J. Lu, Procedia Eng. 29, 105 (2012).

    Article  Google Scholar 

  39. N. Bizon, Renew. Sustain. Energy Rev. 57, 524 (2016).

    Article  Google Scholar 

  40. A. Kheldoun, R. Bradai, R. Boukenoui, and A. Mellit, Energy Convers. Manag. 111, 125 (2016).

    Article  Google Scholar 

  41. S. Palani, S. Peddapati, K. Sundareswaran, and I.E.T. Renew, Power Gener. 8, 670 (2014).

    Article  Google Scholar 

  42. A. Gupta, Y.K. Chauhan, and R.K. Pachauri, Sol. Energy 136, 236 (2016).

    Article  Google Scholar 

  43. D.C. Huynh and M.W. Dunnigan, IEEE Trans. Sustain. Energy 7, 1421 (2016).

    Article  Google Scholar 

  44. Fangrui Liu, Shanxu Duan, Fei Liu, Bangyin Liu, and Yong Kang, IEEE Trans. Ind. Electron. 55, 2622 (2008).

    Article  Google Scholar 

  45. Y.-H. Ji, D.-Y. Jung, J.-G. Kim, J.-H. Kim, T.-W. Lee, and C.-Y. Won, IEEE Trans. Power Electron. 26, 1001 (2011).

    Article  Google Scholar 

  46. A. Pandey, N. Dasgupta, and A. K. Mukerjee, in 32nd Annual Conference on IEEE Industrial Electronics (IECON) (2006), pp. 4387–4391.

  47. Q. Mei, M. Shan, L. Liu, and J.M. Guerrero, IEEE Trans. Ind. Electron. 58, 2427 (2011).

    Article  Google Scholar 

  48. P. Takun, S. Kaitwanidvilai, and C. Jettanasen, in Proceedings of the International MultiConference of Engineers and Computer Scientists (2011).

  49. C.S. Chiu and I.E.E.E. Trans, Energy Convers. 25, 1123 (2010).

    Article  Google Scholar 

  50. S. Li, H. Liao, H. Yuan, Q. Ai, and K. Chen, Sol. Energy 144, 175 (2017).

    Article  Google Scholar 

  51. Syafaruddin, E. Karatepe, T. Hiyama, and I.E.T. Renew, Power Gener. 3, 239 (2009).

    Article  Google Scholar 

  52. S. Saravanan and N. Ramesh Babu, Renew. Sustain. Energy Rev. 57, 192 (2016).

    Article  Google Scholar 

  53. P.-C. Cheng, B.-R. Peng, Y.-H. Liu, Y.-S. Cheng, and J.-W. Huang, Energies 8, 5338 (2015).

    Article  Google Scholar 

  54. J.-K. Shiau, Y.-C. Wei, and B.-C. Chen, Algorithms 8, 100 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekrem Kandemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandemir, E., Borekci, S. & Cetin, N.S. Comparative Analysis of Reduced-Rule Compressed Fuzzy Logic Control and Incremental Conductance MPPT Methods. J. Electron. Mater. 47, 4463–4474 (2018). https://doi.org/10.1007/s11664-018-6273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6273-y

Keywords

Navigation