Skip to main content
Log in

Synthesis and Characterization of Cross-Linked Nanocomposite as a Gate Dielectric for p-Type Silicon Field-Effect Transistor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A good cross-linking between a povidone–silicon oxide nanocomposite has been created using a polar solvent. Furthermore, the effect of annealing temperatures (150°C, 200°C, and 240°C) on the solution-processed povidone–silicon oxide dielectric films has been studied. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy were applied to identify the chemical interactions of the nanocomposite. Morphology of the thin films was examined using atomic force microscopy. Electrical parameters of field effect transistors (FETs) were calculated on the basis of the information obtained from current–voltage (IV) and capacitance–voltage (CV) measurements in the metal–insulator–semiconductor structure. Nanocomposite films had very low surface roughness (0.036–0.084 nm). Si-O-Si and Si-O-C covalent bonds as well as Si-OH hydrogen bonds were formed in the nanocomposite structure. High hole mobilities (1.15–3.87 cm2 V−1 s−1) and low leakage current densities were obtained for the p-type Si FETs. The decrease in the Si-OH hydrogen bonds in the dielectric film annealed at 150°C led to a decrease in capacitance and leakage current as well as threshold voltage, and resulted in an increase in mobility and on/off current ratio. By further increasing the annealing temperatures (200°C and 240°C), the binding energies of all the bonds were shifted toward lower values. Therefore, it was concluded that many bonds could have degraded and that defects might have formed in the dielectric film nanostructure leading to a decline in the electrical parameters of the FETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.-R. Wu, T.-H. Tsai, and D.-S. Wuu, Appl. Surf. Sci. 354, 216 (2015).

    Article  Google Scholar 

  2. A. Srivastava, O. Mangla, and R.K. Nahar, J. Mater. Sci. Mater. Electron. 25, 3257 (2014).

    Article  Google Scholar 

  3. N. Tripathi, V. Jindal, F. Shahedipour-Sandvik, S. Rajan, and A. Vert, Solid-State Electron. 54, 1291 (2010).

    Article  Google Scholar 

  4. Z. Khorshidi, A. Bahari, and R. Gholipur, J. Electron. Mater. 43, 4349 (2014).

    Article  Google Scholar 

  5. B.H. Lee, K.K. Im, K.H. Lee, S. Im, and M.M. Sung, Thin Solid Films 517, 4056 (2009).

    Article  Google Scholar 

  6. A.Z. Kattamis, R.J. Holmes, I.-C. Cheng, K. Long, J.C. Sturm, S.R. Forrest, and S. Wagner, J. IEEE Electron Device Lett. 27, 49 (2006).

    Article  Google Scholar 

  7. K.-Y. Chan, J. Kirchhoff, A. Gordijn, D. Knipp, and H. Stiebig, Thin Solid Films 517, 6383 (2009).

    Article  Google Scholar 

  8. A. Hashemi, A. Bahari, and S. Ghasemi, Appl. Surf. Sci. 416, 234 (2017).

    Article  Google Scholar 

  9. A. Bahari, M. Roeinfard, and A. Ramzannezhad, J. Mater. Sci. Electron. 27, 9363 (2016).

    Article  Google Scholar 

  10. H.-W. Lu and J.-G. Hwu, Appl. Phys. A 115, 837 (2014).

    Article  Google Scholar 

  11. Z. Bao and J. Locklin, Organic Field-Effect Transistors (Berlin: Springer, 2007), pp. 341–371.

    Book  Google Scholar 

  12. E. Lee, J. Jung, A. Cgoi, X. Bulliard, J.-H. Kim, Y. Yun, J. Kim, J. Park, S. Lee, and Y. Kang, RSC Adv. 7, 17841 (2017).

    Article  Google Scholar 

  13. T. Umeda, D. Kumaki, and S. Tokito, Org. Electron. 9, 545 (2008).

    Article  Google Scholar 

  14. S. Faraji, T. Hashimoto, M.L. Turner, and L. Majewski, Org. Electron. 17, 178 (2015).

    Article  Google Scholar 

  15. X. Wu, F. Fei, Z. Chen, W. Su, and Z. Cui, Compos. Sci. Technol. 94, 117 (2014).

    Article  Google Scholar 

  16. K. Takagi, T. Nagase, T. Kobayashi, and H. Naito, Org. Electron. 32, 65 (2016).

    Article  Google Scholar 

  17. M. Makrygianni, A. Ainsebaa, M. Nagel, S. Sanaur, Y.S. Raptis, I. Zergioti, and D. Tsamaki, Appl. Surf. Sci. 390, 823 (2016).

    Article  Google Scholar 

  18. M. Shahbazi, A. Bahari, and S. Ghasemi, Synth. Met. 221, 332 (2016).

    Article  Google Scholar 

  19. V.R. Reddy, J. Appl. Phys. A. 116, 1379 (2014).

    Article  Google Scholar 

  20. F.-Y. Yang, K.-J. Chang, M.-Y. Hsu, and C.-C. Liu, J. Mater. Chem. 18, 5927 (2008).

    Article  Google Scholar 

  21. S.H. Kim, S.Y. Yang, W. Shin, H. Jeon, J.W. Lee, K.P. Hong, and C.E. Park, Appl. Phys. Lett. 89, 183516 (2006).

    Article  Google Scholar 

  22. S. Faraji, E. Danesh, D. Julate, and M.L. Yurner, Appl. Phys. 49, 185102 (2016).

    Google Scholar 

  23. M. Shahbazi, A. Bahari, and S. Ghasem, Org. Electron. 32, 100 (2016).

    Article  Google Scholar 

  24. H. Najafi-Ashtiani, A. Bahari, and S. Ghasemi, Org. Electron. 37, 213 (2016).

    Article  Google Scholar 

  25. H. Najafi-Ashtiani and A. Bahari, Synth. Met. 217, 19 (2016).

    Article  Google Scholar 

  26. R. Gholipur and A. Bahari, Appl. Phys. A 122, 536 (2016).

    Article  Google Scholar 

  27. A. Hashemi and A. Bahari, S, Ghasemi. J. Mater. Sci. Mater. Electron. 28, 13313 (2017).

    Article  Google Scholar 

  28. M.D. Morales-Acosta, C.G. Alvarado-Beltran, M.A. Quevedo-Lopez, and B.E. Gnade, J. Non-Cryst. Solids 362, 124 (2013).

    Article  Google Scholar 

  29. M.D. Morales-Acosta, M.A. Quevedo-Lopez, B.E. Gnade, and R. Ramirez-Bon, J. Sol-Gel. Sci. Technol. 58, 218 (2011).

    Article  Google Scholar 

  30. L.S. Cardoso, J.C. Stefanelo, and R.M. Faria, Synth. Met. 220, 286 (2016).

    Article  Google Scholar 

  31. C.-M. Keum, J.-H. Bae, M.-H. Kim, W. Choi, and S.-D. Lee, Org. Electron. 13, 778 (2012).

    Article  Google Scholar 

  32. S. Kim, A. Kim, K.-S. Jang, S. Yoo, J.-W. Ka, J. Kim, M.H. Yi, J.C. Won, S.-K. Hong, and Y.H. Kim, Synth. Met. 220, 311 (2016).

    Article  Google Scholar 

  33. Michael A. Derenge, K.W. Kirchner, K.A. Jones, P. Suvarna, and S. Shahedipour-Sandvik, J. Solid-State Electron. 101, 23 (2014).

    Article  Google Scholar 

  34. A. Hashemi and A. Bahari, Appl. Phys. A 123, 535 (2017).

    Article  Google Scholar 

  35. B. Gao and Z. Wang, J. Colloid Surf. B. Biointerfaces 79, 446 (2010).

    Article  Google Scholar 

  36. B. Arkles, Silane Coupling Agent (Morrisville: Gelest. Inc, 2006), pp. 2–12.

    Google Scholar 

  37. F. Jolly, F. Rochet, G. Dufour, C. Grupp, and A. Table-Ibrahimi, J. Non-Cryst. Solids 280, 150 (2001).

    Article  Google Scholar 

  38. K.V. Egorov, Y.Y. Lebedinskii, A.M. Markeeva, and O.M. Orlov, Appl. Surf. Sci. 356, 454 (2015).

    Article  Google Scholar 

  39. V. Thakur and S.M. Shivaprasad, Appl. Surf. Sci. 327, 389 (2015).

    Article  Google Scholar 

  40. A.G. Silva, K. Pedersen, Z.S. Li, and P. Morgen, Appl. Surf. Sci. 353, 1208 (2015).

    Article  Google Scholar 

  41. Y. Xu and D. Wu, J. Colloid Surf. A Physicochem. 305, 97 (2007).

    Article  Google Scholar 

  42. I. Karteri, S. Karatas, and F. Yakuphano, Appl. Surf. Sci. 318, 74 (2014).

    Article  Google Scholar 

  43. C. Yang, Y. Kwack, S.H. Kim, T.K. An, K. Hong, S. Nam, M. Park, W.-S. Choi, and C.E. Park, Org. Electron. 12, 411 (2011).

    Article  Google Scholar 

  44. D.O. Hutchins, O. Acton, T. Weidner, N. Cernetic, J.E. Baio, D.G. Castner, and H. Ma, A. K-Y. Jen. Appl. Surf. Sci. 261, 908 (2012).

    Article  Google Scholar 

  45. R.P. Tompkins, I. Mahaboob, S. Shahedipour-sandvik, and N. Lazarus, J. Adv. Electrochem. Sci. Technol. 72, 89 (2016).

    Google Scholar 

  46. X. Fang, C. Lin, Y. Sun, H. Chin, H.-W. Zan, H.-F. Meng, S.-F. Horng, and L.A. Wang, Org. Electron. 31, 227 (2016).

    Article  Google Scholar 

  47. P. Kim, X.-H. Zhang, B. Domercq, S.C. Jones, and P.J. Hotchkiss, Appl. Phys. Letter 93, 013302 (2008).

    Article  Google Scholar 

  48. J. Zhang, H. Zhu, and L. Zhang, Org. Electron. 13, 733 (2012).

    Article  Google Scholar 

  49. R. Navamathavan, C.Y. Kim, and A.S. Jung, J. Korean Phys. Soc. 53, 351 (2008).

    Article  Google Scholar 

  50. A. Bahari, J. Nanostruct. 1, 54 (2012).

    Google Scholar 

  51. H.T. Oyama and J.P. Wightman, J. Surf. Interface Anal. 26, 39 (1998).

    Article  Google Scholar 

  52. T. Watanabe, S. Hasegawa, N. Wakiyama, F. Usui, A. Kusai, T. Isobe, and M. Senna, J. Solid State Chem. 164, 27 (2002).

    Article  Google Scholar 

  53. M. Shahbazi, A. Bahari, and S. Ghasemi, Organ. Electron 32, 100 (2016).

    Article  Google Scholar 

  54. T.T. Dao and M.H. Murata, IEICE Trans. Electron. E98-c, 422 (2015).

    Article  Google Scholar 

  55. S. Faraji, E. Danesh, D.J. Tate, M.L. Turner, and L.A. Majewski, J. Phys. D Appl. Phys. 49, 185102 (2016).

    Article  Google Scholar 

  56. W. Ye, J. Deng, X. Wang, and L. Cui, Appl. Surf. Sci. 390, 831 (2016).

    Article  Google Scholar 

  57. H.X. Xu, J.P. Xu, C.X. Li, C.L. Chan, and P. T. Lai. Appl. Phys. A 99, 903 (2010).

    Article  Google Scholar 

  58. M.-K, Lee, C.-F, Yen, and C.-H, Fan, Appl. Phys. A 116, 2007 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, A., Bahari, A. & Ghasemi, S. Synthesis and Characterization of Cross-Linked Nanocomposite as a Gate Dielectric for p-Type Silicon Field-Effect Transistor. J. Electron. Mater. 47, 3717–3726 (2018). https://doi.org/10.1007/s11664-018-6231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6231-8

Keywords

Navigation