Skip to main content
Log in

Optimum Design of ARC-less InGaP/GaAs DJ Solar Cell with Hetero Tunnel Junction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The operation of hetero In0.49Ga0.51P–Al0.7Ga0.3As tunnel diodes has been evaluated, and an approach for optimizing the back surface field (BSF) layer of a InGaP/GaAs dual-junction (DJ) solar cell developed. The results show that the hetero In0.49Ga0.51P–Al0.7Ga0.3As tunnel diode transferred more electrons and holes and showed less recombination between the top and bottom cells with increased efficiency (η) in the InGaP/GaAs DJ solar cell. To achieve higher open-circuit voltage (Voc), GaAs semiconductor was investigated to match with Al0.52In0.48P with bandgap of 2.4 eV, and replacement of the bottom cell in the InGaP/GaAs DJ solar cell with such an Al0.52In0.48P–GaAs heterojunction increased the photogeneration in this region. In the next step, addition of a BSF layer to the top cell required two BSF layers in the bottom cell to optimize the short-circuit current (Jsc) and η. The thickness and doping of the BSF layers were increased to obtain the highest η for the cell. The proposed structure was then compared with previous works. The proposed structure yielded Voc = 2.46 V, Jsc = 30 mA/cm2, fill factor (FF) = 88.61%, and η = 65.51% under AM1.5 (1 sun) illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abbasian and R. Sabbaghi-Nadooshan, Optik 136, 487 (2017).

    Article  Google Scholar 

  2. P.P. Nayak, J.P. Dutta, and G.P. Mishra, Eng. Sci. Technol. Int. J. 18, 325 (2015).

    Article  Google Scholar 

  3. B. Galiana, I. ReyStolle, M. Baudrit, I. Garcia, and C. Algora, Semicond. Sci. Technol. 21, 1387 (2006).

    Article  Google Scholar 

  4. A. Mesrane, A. Mahrane, F. Rahmoune, and A. Oulebsir, J. Electron. Mater. 46, 1458 (2017).

    Article  Google Scholar 

  5. J.W. Leem, Y.T. Lee, and J.S. Yu, Opt. Quantum Electron. 41, 605 (2009).

    Article  Google Scholar 

  6. S.M. Sze and M.K. Lee, Semiconductor Devices Physics and Technology (Hoboken: Wiley, 2010), pp. 336–345.

    Google Scholar 

  7. K.J. Singh and S.K. Sarkar, Opt. Quantum Electron. 43, 1 (2011).

    Article  Google Scholar 

  8. D.A. Neamen, Semiconductor Physics and Devices (New York: McGraw-Hill, 2003), pp. 313–316.

    Google Scholar 

  9. P. Michalopoulos, A novel approach for the development and optimization of state-of-the-art photovoltaic devices using Silvaco, naval postgraduate school Monterey, California, (2002).

  10. I. Vurgaftman, J.R. Meyer, and L.R. Rammohan, J. Appl. Phys. 89, 5815 (2001).

    Article  Google Scholar 

  11. A.S. Gudovskikh, K.S. Zelentsov, N.A. Kalyuzhnyy, V.M. Lantratov, and S.A. Mintairov, in 25th European Photovoltaic Solar Energy Conference and Exhibition (2010) pp. 472-476.

  12. T.P. White, N.N. Lal, and K.R. Catchpole, IEEE J. Photovolt. 4, 208 (2014).

    Article  Google Scholar 

  13. G. Streetman and S.K. Banerjee, Solid State Electronic Devices, 6th edn. (2006) pp. 508-512.

  14. SILVACO Data Systems Inc., Silvaco ATLAS User’s Manual, (2010).

  15. H.Y. Lee and C.T. Lee, in Proceedings of the 8th International Conference on Electronic Materials, (2002), pp. 99-102.

  16. G.S. Sahoo, P.P. Nayak, and G.P. Mishra, Superlattices Microstruct. 95, 115 (2016).

    Article  Google Scholar 

  17. M. Dey, M.A. Matin, and N.K. Das, in IEEE International Forum on Strategic Technology (IFOST). (2014), pp. 334-338.

  18. E.M.K.I. Ahamed, S. Bhowmik, M.A. Matin, and N. Amin, in IEEE International Conference on Electrical, Computer and Communication Engineering (ECCE). (2017), pp. 428-432.

  19. S. Benabbas, H. Heriche, Z. Rouabah, and N. Chelali, in IEEE North African Workshop on Dielectic Materials for Photovoltaic Systems (NAWDMPV). (2014), pp. 1-5.

  20. K.J. Singh and S.K. Sarkar, in IEEE International Conference on Energy Efficient Technologies for Sustainability (ICEETS). (2016), pp. 182-186.

  21. R.R. King, N.H. Karam, J.H. Ermer, N. Haddad, P. Colter, T. Isshiki, H. Yoon, H.L. Cotal, D.E. Joslin, D.D. Krut, R. Sudharsanan, K. Edmondson, B.T. Cavicchi, and D.R. Lillington, in IEEE Photovoltaic Specialists Conference. (2000), pp. 998-1001.

  22. M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A.W. Bett, Prog. Photovolt. Res. Appl. 23, 1323 (2015).

    Article  Google Scholar 

  23. M.J. Keevers, C.F.J. Lau, M.A. Green, I. Thomas, J.B. Lasich, R.R. King, and K.A. Emery, World Conference on Photovoltaic Energy Conversion (WCPEC-6), (2014), pp. 1-2.

  24. M. Steiner, G. Siefer, T. Schmidt, M. Wiesenfarth, F. Dimroth, and A.W. Bett, IEEE J. Photovolt. 6, 1020 (2016).

    Article  Google Scholar 

  25. M.R. Lueck, C.L. Andre, A.J. Pitera, M.L. Lee, E.A. Fitzgerald, and S.A. Ringel, IEEE Electron Device Lett. 27, 142 (2006).

    Article  Google Scholar 

  26. J.P. Dutta, P.P. Nayak, and G.P. Mishra, Optik 127, 4156 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Sabbaghi-Nadooshan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasian, S., Sabbaghi-Nadooshan, R. Optimum Design of ARC-less InGaP/GaAs DJ Solar Cell with Hetero Tunnel Junction. J. Electron. Mater. 47, 3585–3595 (2018). https://doi.org/10.1007/s11664-018-6203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6203-z

Keywords

Navigation