Skip to main content
Log in

Temperature-Dependent Electrical Characteristics of Au/Si3N4/4H n-SiC MIS Diode

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrical characteristics of the Au/Si3N4/4H n-SiC metal–insulator-semiconductor (MIS) diode were investigated under the temperature, \( T \), interval of 160–400 K using current–voltage (IV), capacitance–voltage (\( C {-} V \)) and conductance–voltage (\( G/\omega {-} V \)) measurements. Firstly, the Schottky diode parameters as zero-bias barrier height (\( \Phi_{{\rm B}0} \)) and ideality factor (\( n \)) were calculated according to the thermionic emission (TE) from forward bias IV analysis in the whole working \( T \). Experimental results showed that the values of \( \Phi_{{\rm B}0} \) were in increasing behavior with increasing \( T \) while \( n \) values decreased with inverse proportionality in \( n \) versus \( \Phi_{{{\rm{B}}0}} \) plot. Therefore, the non-ideal IV behavior with inhomogeneous barrier height (BH) formation has been discussed under the assumption of Gaussian distribution (GD). From the GD of BHs, the mean BH was found to be about 1.40 eV with 0.1697 standard deviation and the modified Richardson constant \( A^{*} \) of this diode was obtained as 141.65 A/cm2 K2 in good agreement with the literature (the theoretical value of \( A^{*} \) is 137.21 A/cm2 K2). The relationship between \( \Phi_{{\rm B}0} \) and \( n \) showed an abnormal IV behavior depending on \( T \), and it was modeled by TE theory with GD of BH due to the effect in inhomogeneous BH at the interface. Secondly, according to Cheung’s model, series resistance, \( R_{\rm{S}} \) values were calculated in the \( T \) range of 160–400 K and these values were found to decrease with increasing \( T \). Finally, the density of interface states, \( D_{\rm{it}} \) was calculated and the \( T \) dependence of energy distribution of \( D_{\rm{it}} \) profiles determined the forward \( I {-} V \) measurements by taking into account the bias dependence of the effective BH, \( \Phi_{\rm{e}} \) and \( n \). \( D_{\rm{it}} \) were also calculated according to the Hill–Coleman method from \( C {-} V \) and \( G/\omega {-} V \) analysis. Furthermore, the variation of \( D_{\rm{it}} \) as a function of frequency, \( f \) and \( T \) were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.G.V. Walle, Wide-Band-Gap Semiconductors (Amsterdam: North-Holland, 1993).

    Google Scholar 

  2. C.Y. Chang, F.M. Pan, J.S. Lin, T.Y. Yu, Y.M. Li, and C.Y. Chen, J. Appl. Phys. 120, 234501 (2016).

    Article  Google Scholar 

  3. F.Z. Pür and A. Tataroğlu, Phys. Scr. 86, 035802 (2012).

    Article  Google Scholar 

  4. S. Zeyrek, Ş. Altındal, H. Yuzer, and M.M. Bülbül, Appl. Surf. Sci. 252, 2999 (2006).

    Article  Google Scholar 

  5. A. Tataroğlu and F.Z. Pür, Phys. Scr. 88, 015801 (2013).

    Article  Google Scholar 

  6. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices (Hoboken: Wiley, 2007).

    Google Scholar 

  7. I.R. Kaufmann, A. Pick, M.B. Pereira, and H.I. Boudinov, Semicond. Sci. Technol. 30, 125002 (2015).

    Article  Google Scholar 

  8. G.S. Chung, K.S. Kim, and F. Yakuphanoglu, J. Alloys Compd. 507, 508 (2010).

    Article  Google Scholar 

  9. N. Yıldırım, A. Turut, and V. Turut, Microelectron. Eng. 87, 2225 (2010).

    Article  Google Scholar 

  10. P.G. Neudeck, J. Electron. Mater. 24, 283 (1995).

    Article  Google Scholar 

  11. K.J. Schoen, J.M. Woodall, J.A. Cooper Jr., and M.R. Melloch, IEEE Trans. Electron. Devices 45, 1595 (1998).

    Article  Google Scholar 

  12. Q. Wang, X. Cheng, L. Zheng, P. Ye, M. Li, L. Shen, J. Li, D. Zhang, Z. Gu, and Y. Yu, Appl. Surf. Sci. 409, 71 (2017).

    Article  Google Scholar 

  13. S. Alialy, Ş. Altındal, E.E. Tanrıkulu, and D.E. Yıldız, J. Appl. Phys. 116, 083709 (2014).

    Article  Google Scholar 

  14. J.B. Casady and R.W. Johnson, Solid State Electron. 39, 1409 (1996).

    Article  Google Scholar 

  15. R. Singh, J.A. Cooper, M.R. Melloch, T.P. Chow, and J.W. Palmour, IEEE Trans. Electron. Devices 49, 665 (2002).

    Article  Google Scholar 

  16. M. Sochacki, A. Kolendo, J. Szmidt, and A. Werbowy, Solid State Elctron. 49, 585 (2005).

    Article  Google Scholar 

  17. M.M. Bülbül, S. Zeyrek, Ş. Altındal, and H. Yüzer, Microelectron. Eng. 83, 577 (2006).

    Article  Google Scholar 

  18. R.S. Dale, C.S. Rastomjee, F.H. Potter, R.G. Egdell, and T.J. Tate, Appl. Surf. Sci. 70, 359 (1993).

    Article  Google Scholar 

  19. M. Özer, D.E. Yıldız, Ş. Altındal, and M.M. Bülbül, Solid State Electron. 51, 941 (2007).

    Article  Google Scholar 

  20. Ş. Altındal, S. Karadeniz, N. Tuğluoğlu, and A. Tataroğlu, Solid State Electron. 47, 1847 (2003).

    Article  Google Scholar 

  21. A. Tataroğlu, Ş. Altındal, and M.M. Bülbül, Microelectron. Eng. 81, 140 (2005).

    Article  Google Scholar 

  22. İ. Taşçıoğlu, Ö.T. Özmen, H.M. şağban, E. Yağlıoğlu, and ş. Altındal, J. Electron. Mater. 46, 2379 (2017).

    Article  Google Scholar 

  23. R. Yakimova, C. Hemmingsson, M.F. Macmillan, T. Yakimov, and E. Janzén, J. Electron. Mater. 27, 871 (1998).

    Article  Google Scholar 

  24. S. Toumi, A. Ferhat-Hamida, L. Boussouar, A. Sellai, Z. Ouennoughi, and H. Ryssel, Microelectron. Eng. 86, 303 (2009).

    Article  Google Scholar 

  25. L. Boussouar, Z. Ouennoughi, N. Rouag, A. Sellai, R. Weiss, and H. Ryssel, Microelectron. Eng. 88, 969 (2011).

    Article  Google Scholar 

  26. R. Weiss, L. Frey, and H. Ryssel, Appl. Surf. Sci. 184, 413 (2001).

    Article  Google Scholar 

  27. F. Roccaforte, F. La Via, V. Raineri, R. Pierobon, and E. Zanoni, J. Appl. Phys. 93, 9137 (2003).

    Article  Google Scholar 

  28. M.R. Aydın, N. Yıldırım, and A. Türüt, J. Appl. Phys. 102, 043701 (2007).

    Article  Google Scholar 

  29. S. Alialy, Ş. Altındal, E.E. Tanrıkulu, and D.E. Yıldız, J. Appl. Phys. 116, 083709 (2014).

    Article  Google Scholar 

  30. P.A. Yunin, Yu.N. Drozdov, M.N. Drozdov, S.A. Korolev, A.I. Okhapkin, O.I. Khrykin, and V.I. Shaskin, Semiconductors 49, 1421 (2005).

    Article  Google Scholar 

  31. C.R. Crowell, Solid State Electron. 8, 395 (1965).

    Article  Google Scholar 

  32. A. Itoh and H. Matsunami, Crit. Rev. Solid State Mater. Sci. 22, 111 (1997).

    Article  Google Scholar 

  33. A. Itoh, T. Kimoto, and H. Matsunami, IEEE Electron. Device Lett. 16, 280 (1995).

    Article  Google Scholar 

  34. H. Altuntaş, ş. Altındal, H. Shtrikman, and S. Özçelik, Microelectron. Reliab. 49, 904 (2009).

    Article  Google Scholar 

  35. A. Tataroğlu, Phys. Scr. 88, 015801 (2013).

    Article  Google Scholar 

  36. V. Janardhanam, H. Lee, K. Shim, H. Hong, S. Lee, K. Ahn, and C. Choi, J. Alloys Compd. 504, 146 (2010).

    Article  Google Scholar 

  37. H.C. Card and E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).

    Article  Google Scholar 

  38. P. Chattopadhyay and A.N. Daw, Solid State Electron. 29, 555 (1986).

    Article  Google Scholar 

  39. R.F. Schmitsdorf, T.U. Kampen, and W. Mönch, J. Vac. Sci. Technol. B 15, 1221 (1997).

    Article  Google Scholar 

  40. R.T. Tung, Appl. Phys. Lett. 58, 2821 (1991).

    Article  Google Scholar 

  41. C.R. Crowell, Solid State Electron. 20, 171 (1977).

    Article  Google Scholar 

  42. R.T. Tung, Phys. Rev. B 45, 13509 (1992).

    Article  Google Scholar 

  43. D.E. Yıldız, Ş. Altındal, and H. Kanbur, J. Appl. Phys. 103, 124502 (2008).

    Article  Google Scholar 

  44. J.H. Werner and H.H. Guttler, J. Appl. Phys. 69, 1522 (1991).

    Article  Google Scholar 

  45. Ş. Altındal, S. Karadeniz, N. Tuğluoğlu, and A. Tataroğlu, Solid State Electron. 47, 1847 (2003).

    Article  Google Scholar 

  46. A. Gümüş, A. Türüt, and N.J. Yalçın, Appl. Phys. 91, 245 (2002).

    Article  Google Scholar 

  47. J.H. Werner and H.H. Güttler, Phys. Scr. T39, 258 (1991).

    Article  Google Scholar 

  48. S. Karatas, Ş. Altındal, A. Türüt, and A. Özmen, Appl. Surf. Sci. 217, 250 (2003).

    Article  Google Scholar 

  49. K.S.Y. Yasumura, J. Appl. Phys. 58, 3655 (1985).

    Article  Google Scholar 

  50. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  51. Ş. Altındal, H. Kanbur, D.E. Yıldız, and M. Parlak, Appl. Surf. Sci. 253, 5056 (2007).

    Article  Google Scholar 

  52. B. Şahin, H. Çetin, and E. Ayyıldız, Solid State Commun. 135, 490 (2005).

    Article  Google Scholar 

  53. P. Chattopadyay and B. Raychaudhuri, Solid State Electron. 35, 605 (1993).

    Article  Google Scholar 

  54. P. Chattopadyay and S. Sanyal, Appl. Surf. Sci. 89, 205 (1995).

    Article  Google Scholar 

  55. W. Mönch, Electronic Properties of Semiconductor Interfaces (Berlin: Springer, 2004).

    Book  Google Scholar 

  56. W.A. Hill and C.C. Coleman, Solid State Electron. 23, 987 (1980).

    Article  Google Scholar 

  57. S. Zeyrek, Ş. Altındal, H. Yüzer, and M.M. Bülbül, Appl. Surf. Sci. 252, 2999 (2006).

    Article  Google Scholar 

  58. D.E. Yıldız and Ş. Altındal, Microelectron. Eng. 85, 289 (2008).

    Article  Google Scholar 

  59. B. Akkal, Z. Benamara, A. Boudissa, N. Bachir Bouiadjra, M. Amrani, L. Bideux, and B. Gruzza, Mater. Sci. Eng. B 55, 162 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Yıldız.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yigiterol, F., Güllü, H.H., Bayraklı, Ö. et al. Temperature-Dependent Electrical Characteristics of Au/Si3N4/4H n-SiC MIS Diode. J. Electron. Mater. 47, 2979–2987 (2018). https://doi.org/10.1007/s11664-018-6155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6155-3

Keywords

Navigation