Skip to main content
Log in

Catastrophic Optical Damage of GaN-Based Diode Lasers: Sequence of Events, Damage Pattern, and Comparison with GaAs-Based Devices

  • Topical Collection: 17th Conference on Defects (DRIP XVII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gallium-nitride-based diode lasers were intentionally damaged using single sub-μs current pulses. This approach provoked catastrophic optical damage, a known sudden degradation mechanism, which becomes evident as surface modification at the aperture, where the 450-nm laser emission leaves the waveguide of the device. Subsequently, we analyzed the related damage pattern inside the device. Knowledge about the operating conditions, degradation time, and energy introduced into the defect allows estimates of the temperature during the process (∼ 1000°C) and defect propagation velocity (110 μm/μs). Further analysis of this data allows for conclusions regarding the mechanisms that govern defect creation at the surface and defect propagation inside the device. Moreover, we compared these findings with earlier results obtained from gallium-arsenide-based devices and find similarities in the overall scenario, while the defect initialization and defect pattern are strikingly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Harder, Pump Diode Lasers (Amsterdam: Elsevier, 2008), p. 107.

    Google Scholar 

  2. J.W. Tomm, M. Ziegler, M. Hempel, and T. Elsaesser, Laser Photon. Rev. 5, 422 (2011).

    Article  Google Scholar 

  3. M. Furitsch, Untersuchung von Degradationsmechanismen an (Al/In)GaN-basierenden Laserdioden, 1st ed. (Göttingen: Cuvillier, 2007), p. 168.

    Google Scholar 

  4. T. Schoedl, U.T. Schwarz, V. Kummler, M. Furitsch, A. Leber, A. Miler, A. Lell, and V. Harle, J. Appl. Phys. 97, 1231021 (2005).

    Article  Google Scholar 

  5. T. Schoedl, U.T. Schwarz, S. Miller, A. Leber, M. Furitsch, A. Lell, and V. Harle, Phys. Status Solidi A Appl. Res. 201, 2635 (2004).

    Google Scholar 

  6. U. Strauss, A. Somers, U. Heine, T. Wurm, M. Peter, C. Eichler, S. Gerhard, G. Bruederl, S. Tautz, B. Stojetz, A. Loeffler, and H. Koenig, Proc. SPIE 10123, 101230A (2017).

    Google Scholar 

  7. G. Mura, M. Vanzi, M. Hempel, and J.W. Tomm, Phys. Status Solidi (RRL) Rapid Res. Lett. 11, 17001321 (2017).

    Google Scholar 

  8. H.Y. Ryu, K.H. Ha, S.N. Lee, K.K. Choi, T. Jang, J.K. Son, J.H. Chae, S.H. Chae, H.S. Paek, Y.J. Sung, T. Sakong, H.G. Kim, K.S. Kim, Y.H. Kim, O.H. Nam, and Y.J. Park, Photon. Technol. Lett. IEEE 18, 1001 (2006).

    Article  Google Scholar 

  9. H.Y. Ryu, K.H. Ha, S.N. Lee, K.K. Choi, T. Jang, J.K. Son, H.G. Kim, J.H. Chae, H.S. Paek, Y.J. Sung, T. Sakong, K.S. Kim, O.H. Nam, and Y.J. Park, Proc. SPIE 6352, 63521I (2006).

    Article  Google Scholar 

  10. M. Kawaguchi, H. Kasugai, K. Samonji, H. Hagino, K. Orita, K. Yamanaka, M. Yuri, and S. Takigawa, IEEE J. Sel. Top. Quantum Electron. 17, 1412 (2011).

    Article  Google Scholar 

  11. M. Hempel, M. Ziegler, J.W. Tomm, T. Elsaesser, N. Michel, and M. Krakowski, Appl. Phys. Lett. 96, 251105 (2010).

    Article  Google Scholar 

  12. M. Hempel, J.W. Tomm, B. Stojetz, H. König, U. Strauss, and T. Elsaesser, Semicond. Sci. Technol. 30, 0720011 (2015).

    Article  Google Scholar 

  13. S. Porowski, B. Sadovyi, S. Gierlotka, S.J. Rzoska, I. Grzegory, I. Petrusha, V. Turkevich, and D. Stratiichuk, J. Phys. Chem. Solids 85, 138 (2015).

    Article  Google Scholar 

  14. W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki, and O. Shimomura, Nat. Mater. 2, 735 (2003).

    Article  Google Scholar 

  15. Y. Sin, Z. Lingley, M. Brodie, N. Presser, and S.C. Moss, Proc. SPIE 10086, 100860S1 (2017).

    Article  Google Scholar 

  16. http://www.ioffe.ru/SVA/NSM/Semicond/.

  17. V.P. Vasil’ev and J.C. Gachon, Inorg. Mater. 42, 1176 (2006).

    Article  Google Scholar 

  18. M. Hempel, F. La Mattina, J.W. Tomm, U. Zeimer, R. Broennimann, and T. Elsaesser, Semicond. Sci. Technol. 26, 075020 (2011).

    Article  Google Scholar 

  19. J.H. Jacob, R. Petr, M.A. Jaspan, S.D. Swartz, M.T. Knapczyk, and A.M. Flusberg, Proc. SPIE 7198, 7198151 (2009).

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Anna Mogilatenko and Dr. Harald König for helpful discussions. We also thank Dr. Elodia Musu of CRS4-Cagliari for FIB sample preparation, and Dr. Vittorio Morandi and Dr. Andrea Migliori of CNR-IMM Bologna for TEM/STEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens W. Tomm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomm, J.W., Kernke, R., Mura, G. et al. Catastrophic Optical Damage of GaN-Based Diode Lasers: Sequence of Events, Damage Pattern, and Comparison with GaAs-Based Devices. J. Electron. Mater. 47, 4959–4963 (2018). https://doi.org/10.1007/s11664-018-6144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6144-6

Keywords

Navigation